$\approx\}\ulcorner @ \infty \Sigma \pi$

Simple vs. Compound Interest ${ }^{{ }^{\text {Primcipal }}}$
balance

Simple Interest is paid only on the principal amount.

Compound Interest is paid on the principal and the interest added to to the principal.

EX 1: Calculating Compound Interest on $\$ 1000$ at 10% interest compounded annually.

After n years	Interest	Balance

Compound Interest Formula (when compounding only once per year)

$$
A=P(1+A P R)^{Y}
$$

A $\quad=$ Account balance after Y years
P = Principal amount invested
$\mathrm{APR}=$ annual percentage rate (as a decimal)
$\mathrm{Y} \quad=$ number of years
EX 1: Find the balance if you invest $\$ 3000$ at an APR of 4% for 12 years.

Compound Interest Formula (when compounding more than once a year)

$$
\begin{aligned}
& A=P\left(1+\frac{A P R}{n}\right)^{(n Y)} \\
& \mathrm{A} \quad=\text { Amount after Y years } \\
& \mathrm{P} \quad=\text { Principal amount } \\
& \mathrm{APR}=\text { Annual interest rate as a decimal } \\
& \mathrm{n} \quad=\text { number of times compounded each year } \\
& \mathrm{Y} \quad=\text { number of years of compounding }
\end{aligned}
$$

EX 2: Find the balance if you invest $\$ 3000$ for 12 years at 4%, in an account which compounds daily.

