

Half-life is the time it takes for half of a population to vanish if it

decreases by the same percent each time period.

EX 1: If a city of 1000 people is decreasing by 10% each year, when will there be half as many people?

Scenario

Year	Number of people
0	1000
	D.9(1000) = 900
2	0.92(1000) = 810
3	$0.9(0.9^2)(1000)=0.9^3(1000)=729$
4	0.94(1000)~656
5	0.95 (1000) = 595
6	0,96(1000)= 231
7	0.97(1000)~478
	⇒haff-life is about 7 yrs
	about 7 yrs

After a time, t, an exponentially decaying quantity with a half life of T_{half} decreases in size by a factor of (1/2)1/T. The new value is related to the initial value by $new value = initial value \times (1/2)^{t/T}$. decay (shrink)
factor = (14/7

Approximate Half-life

For a quantity decaying exponentially at a rate of P% per time period

This works best for small rates and breaks down for rates over about 15%.

decreases (shrinks) by factor of
$$(\frac{1}{2})^{\frac{800}{5700}} \sim 0.9073$$

- EX 3: A clean-up project is reducing the concentration of a pollutant in the water supply, with a 3.5% decrease per week.
 - a) What is the approximate half-life of the concentration of the pollutant?

b) What fraction of the original will remain after one year?

lyr=52 weeks,
$$t=52 \text{ wks}$$
, $T_k=20 \text{ wks}$
decay (shrink) factor = $\left(\frac{1}{2}\right)^{\frac{1}{2}}$

$$=\left(\frac{5}{1}\right)_{25} \sim 0.162$$

Exact half-life formula:

$$T_{half} = -\frac{log_{10}(2)}{log_{10}(1+r)}$$
 where r is a decimal and negative.

Note: The units of time for r and T must be the same (per month, year, etc.)

- EX 4: Suppose the Russian ruble is falling in value against the dollar at 11% per year.
 - a) Approximately how long will it take the ruble to lose half its value?

b) Exactly how long will it take the ruble to lose half its value?

$$T_h = \frac{-\log 2}{\log (1+0.11)} \approx \frac{-\log 2}{\log (0.89)} \approx 5.948$$