$\approx\}\ulcorner @ \infty \Sigma \pi$

Linear vs Exponential Growth

The power of doubling can be seen in this example:

EX 1: Your rich uncle gives you a dollar and says, "I will double this amount tomorrow and double that amount the next day. I will continue this as long as you do not miss any part of a day of school."

a) How much will you get on the sixth continuous day of attending school?
b) On what day will he have to give you over a million dollars?

EX 2: Say that a bacteria growing in a lab doubles every 3 minutes. You begin at noon with 2 bacteria in a bottle. In 2 hours, the bottle is full.
a) How many bacteria fit in the bottle?
b) At what time is the bottle half-full?
c) What percent of the bottle is filled at $1: 51$?

EX 3: Seventy percent of the surface of the earth is covered with water. That leaves about $1.53 \times 10^{14} \mathrm{~m}^{2}$ of 'land'. If the population in the year 2000 was six billion and the population doubles every fifty years, when will we each have only $1 \mathrm{~m}^{2}$ of space to occupy? $n=\#$ of so-ys increments $n=0$ in year 2000

