Section 3.4: Equations of Lines

Objectives:

✽ Write equations of lines using point-slope form.
✽ Write equations of horizontal, vertical, parallel and perpendicular lines.
✽ Graph a linear equation without changing the form of the equation.
✽ Use linear models to solve application problems.
Point-slope form of an equation of a line: \[y-y_1 = m(x-x_1) \]

\((x_1,y_1)\) is a point on the line, \(m\) is the slope of the line.

Slope-intercept form of an equation is \[y = mx + b \]

\(m\) is the slope and \((0,b)\) is the y-intercept.

General form of an equation of a line: \[Ax + By + C = 0 \]

\(A, B,\) and \(C\) are integers.

Write the equation of a line with slope \(m = 3/5\) which goes through the point \((-1,2)\) and put it in each of the three forms.

\[
\begin{align*}
\text{Point-slope form:} & \quad y - 2 = \frac{3}{5}(x + 1) \\
& \quad \text{Simplifying:} \quad y - 2 = \frac{3}{5}x + \frac{3}{5} + 2 \\
& \quad \text{Solving for } y: \quad y = \frac{3}{5}x + \frac{13}{5} \\
& \quad \text{General Form:} \quad 5\left(\frac{3}{5}x + y - \frac{13}{5}\right) = 0 \\
& \quad \text{Multiplying through by 5:} \quad -3x + 5y - 13 = 0
\end{align*}
\]
EXAMPLE
Write the equation in slope-intercept form for the lines containing these pairs of points.

a) (-3,2) and (5,2)

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 2}{5 - (-3)} = \frac{0}{8} = 0 \]

\[\text{Pt slope} \quad y - 2 = 0(x - (-3)) \]

(General Form)

\[y - 2 = 0 \]

(Slope-intercept form)

\[y = 2 \]

b) (-3,2) and (-3,5)

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 2}{-3 - (-3)} = \frac{3}{0} = \text{Undefined} \]

Vertical line \[x = -3 \]

c) (-3/2, -1/2) and (5/8, 1/2)

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{1}{2} - \frac{1}{2}}{\frac{5}{8} - \frac{-3}{2}} = \frac{0}{\frac{5}{8} + \frac{3}{2}(\frac{4}{4})} = \frac{1}{\frac{5}{8} + \frac{6}{8}} = \frac{1}{\frac{11}{8}} = \frac{8}{17} \]

Pt. slope form

\[y - \left(-\frac{1}{2}\right) = \frac{8}{17}(x - \frac{3}{2}) \]

\[y + \frac{1}{2} = \frac{8}{17}x + \frac{4}{17}(3) \]

\[y + \frac{1}{2} = \frac{8}{17}x + \frac{12}{17} \]

\[y = \frac{8}{17}x + \frac{12}{17} - \frac{1}{2} \]

\[= \frac{12}{17} - \frac{1}{2} \]

\[= \frac{12}{17} \left(\frac{1}{2}\right) - \frac{1}{2} \left(\frac{17}{17}\right) \]

\[= \frac{12}{34} - \frac{17}{34} = \frac{7}{34} \]

Slope-intercept form

\[y = \frac{8}{17}x + \frac{7}{34} \]
EXAMPLE

Write the equation of a line through (3,2) and (5,-4).
State the equation in point-slope form \((y-y_1) = m(x-x_1)\)
slope-intercept form \((y = mx+b)\) and
general form \((Ax + By + C = 0)\)

\[
m = \frac{-4-2}{5-3} = \frac{-6}{2} = -3
\]

\[
y-2 = -3(x-3)
\]
\[
y = -3x + 9
\]

\[
y = -3x + 11
\]

\[
3x + y = 11
\]
\[
3x + y - 11 = 0
\]
Horizontal and Vertical lines

A horizontal line has an equation in the form: $y = a$

A vertical line has an equation in the form: $x = b$

Example
Graph these equations and write the coordinates of three points on each line.

1. $x = -2$
2. $y = 3$
EXAMPLE

a) Write an equation of a vertical line through (5,8)

\[x = 5 \]

b) Write an equation of a horizontal line through (-1, 7)

\[y = 7 \]
EXAMPLE

Find the equation of a line perpendicular to \(3x - 4y = 12\) which passes through the point \((-3,6)\)

\[
m = \frac{y_1 - y_0}{x_1 - x_0} = \frac{-4}{3} \quad \text{for the line through } (-3,6)
\]

\[
y - 6 = \frac{-4}{3} (x + 3)
\]

\[
y - 6 = \frac{-4}{3} x - 4
\]

\[
y = \frac{-4}{3} x + 2
\]
How to sketch a linear equation without changing the form of the equation.

\[y = -2 \]

\[3x - 2y = 6 \]
\[\Rightarrow y = -\frac{3}{2}x + 3 \]

\[y = -\frac{2}{3}x \]

\[x = 3 \]

\[y - 3 = -2(x + 1) \]

\[y = \frac{3}{2}x - 2 \]
Applications:

a) The total sales for a new sportswear store were $150,000 for the third year and $250,000 for the fifth year. Find a linear model to represent the data. Estimate the total sales for the sixth year.

\[m = \frac{250000 - 150000}{5 - 3} = \frac{100000}{2} = 50000 \]

\[y - 150000 = 50000(x - 3) \]

\[y = 50000x - 150000 \]

b) A business purchases a van for $27,500. After 5 years the depreciated value will be $12,000. Assuming a straight-line depreciation, write an equation of the line giving the value \(V \) of the van in terms of the time \(t \) in years.

Use that equation to find the value of the van after 2 years.

\[m = \frac{27500 - 12000}{0 - 5} = \frac{15500}{-5} = -3100 \]

\[V - 27500 = -3100(t - 0) \]

\[V = -3100t + 27500 \]

After 2 yrs, \(t = 2 \)

\[V = -3100(2) + 27500 \]

\[= -6200 + 27500 \]

\[= 21300 \]