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Instructions. Attempt as many problems as you want. To pass, you must
demonstrate mastery of both real and complex analysis. Getting 3 problems
completely correct on each section is sufficient to do this. Carefully state all
theorems you are using.

Part A: Real Analysis

Problem 1. Let (X,M) be a measurable space and µ, ν two measures on
it. Suppose that for every E ∈M

µ(E) = 0 ⇒ ν(E) = 0

(a) Assuming ν(X) <∞ prove that for every ε > 0 there is δ > 0 such that

µ(E) < δ ⇒ ν(E) < ε

You are not allowed to use the Radon-Nikodym theorem for this prob-
lem.

(b) Find an example where the above statement is false when ν(X) =∞.

Problem 2. Let (X,M, µ) be a measure space and let f : X → [0,∞) be
a measurable function. Define a new measure ν by

ν(E) =

∫
E
f dµ

for E ∈ M (you don’t have to prove that ν is a measure). Prove that for
every positive measurable function g∫

X
g dν =

∫
X
fg dµ

Problem 3. Let (X,M, µ) be a measure space with µ(X) < ∞. Denote
by S the set of equivalence classes of measurable functions X → R where
f ∼ g if and only if f = g a.e. For f, g ∈ S define

d(f, g) =

∫
X

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx

Show that (S, d) is a metric space and fk → f in (S, d) if and only if fk → f
in measure in X.

Problem 4. Let C([0, 1]) be the Banach space of continuous functions on
[0, 1] with the sup norm and view it as a natural subspace of L∞([0, 1]),
where [0, 1] is given Lebesgue measure, and the norm is essential supremum.

Prove the existence of a bounded functional on L∞([0, 1]) which is not
identically 0 but vanishes on C([0, 1]).



Problem 5. Let fn ∈ C([0, 1]) for n = 1, 2, · · · . Show that the following
statements are equivalent:

(a) For every λ ∈ C([0, 1])∗ we have λ(fn)→ 0 as n→∞.
(b) fn(x)→ 0 for every x ∈ [0, 1] and sup ||fn||∞ <∞.

Here ||f ||∞ = supx∈[0,1] |f(x)|.

Problem 6. Let H be a Hilbert space and P : H → H a self-adjoint
operator, i.e. 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ H. Also assume that P 2 = P .
Prove that P is orthogonal projection to a closed subspace. Note that we
are not assuming that P is bounded.



Part B: Complex Analysis

Problem 7. Let f(z) be an analytic function. Show that the successive

derivatives of f(z) at a point can never satisfy |f (n)(z)| > n!nn for all n.

Problem 8. Evaluate the integral by the method of residue:∫ ∞
0

x1/3

1 + x2
dx.

Problem 9. If f(z) is analytic in |z| ≤ 1 and satisfies |f | = 1 on |z| = 1,
show that f(z) is rational.

Problem 10. Show that the family of functions {zn}n∈Z≥0
form a normal

family in |z| < 1, also in |z| > 1, but not in any region that contains a point
on the unit circle.

Problem 11. Let ℘(z) be the Weierstrass ℘ function. Prove that there are
constants g2 and g3 such that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.


