Qualifying Exam
Analysis of Numerical Methods I, January 2022

Instructions: This exam is closed book, no notes, and no electronic devices or calculators are allowed. You have two hours and you will be graded on work for only 3 out of the 4 questions below. All questions have equal weight and a cumulative score of 65% or more on your 3 graded questions is considered a pass. A cumulative score of 80% or greater is considered a high pass. Indicate clearly the work and the 3 questions that you wish to be graded.

Problem 1. (Rank-One Perturbation of the Identity).
If \(u \) and \(v \) are \(n \)-vectors, the matrix \(B = I + uv^* \) is known as a rank-one perturbation of the identity. Show that if \(B \) is nonsingular, then its inverse has the form \(B^{-1} = I + \beta uv^* \) for some scalar \(\beta \), and give an expression for \(\beta \).
For what \(u \) and \(v \) is \(B \) singular? If it is singular, what is \(\text{null}(B) \)?

Problem 2. (Properties via SVD).
a) Consider \(A \in \mathbb{C}^{m \times n} \). Define what we mean by the singular value decomposition of \(A \).
b) Show that the rank of \(A \) is \(r \), the number of nonzero singular values.
c) Show that the largest singular value of \(A \), call it here \(\sigma_{\text{max}}(A) \), satisfies the relation
\[
\sigma_{\text{max}}(A) = \max_{y \in \mathbb{C}^m, x \in \mathbb{C}^n} \frac{|y^*Ax|}{||x||_2||y||_2}.
\]

Problem 3. (Properties of Projectors).
Prove algebraically:
a) Show that if \(P \in \mathbb{C}^{m \times m} \) is a nonzero projector, then \(||P||_2 \geq 1 \).
b) Show that if \(P \) is an orthogonal projector, then \(I - 2P \) is unitary.

Problem 4. (Hadamard’s Inequality).
Prove algebraically:
Let \(A \in \mathbb{C}^{m \times m} \) and let \(a_j \) denote the \(j^{th} \) column of \(A \). Then, show that,
\[
|\det(A)| \leq \Pi_{j=1}^m ||a_j||_2.
\]