There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a \textit{pass}, and three correct as a \textit{high pass}. Show all your work, and provide reasonable justification for your answers.

1. Let \(d \) be the greatest common divisor of positive integers \(n \) and \(m \). Prove that
 \[
 \mathbb{Z}/(n) \otimes \mathbb{Z}/(m) \cong \mathbb{Z}/(d).
 \]

2. Let \(M \) be the cokernel of the map
 \[
 \begin{pmatrix}
 2 & 2 & 4 \\
 2 & 4 & 6 \\
 2 & 6 & 8 \\
 \end{pmatrix}
 \begin{pmatrix}
 \mathbb{Z}^3 \\
 \mathbb{Z}^3
 \end{pmatrix}
 \]
 Write \(M \) as a direct sum of cyclic \(\mathbb{Z} \)-modules.

3. Let \(I_k \) denote the \(k \times k \) identity matrix. Suppose \(M \) is a \(2n \times 2n \) matrix over \(\mathbb{Q} \) such that \(M^2 = -I_{2n} \), prove that \(M \) is similar to the matrix
 \[
 \begin{pmatrix}
 0 & -I_n \\
 I_n & 0 \\
 \end{pmatrix}
 \]

4. State the Noether normalization lemma.
 Let \(M \) be a maximal ideal of the ring \(A = \mathbb{R}[x,y,z]/(x^2 + y^2 + z^2 + 1) \). Determine the field \(A/M \).

5. Consider the ring homomorphism given by
 \[
 \begin{align*}
 \mathbb{Z}[x] & \longrightarrow \mathbb{Z} \times \mathbb{Z} \\
 f(x) & \longmapsto (f(1), f(-1))
 \end{align*}
 \]
 Is this homomorphism surjective? Determine a minimal generating set for the kernel.