1. What are the values of the following complex expressions? Show them in the complex plane.
 (a) \(i^i \)
 (b) \(\tan i \)

2. The following functions \(f(x) \) are expanded in powers of \(x \) (i.e. in Taylor or Laurent series around the origin); \(x \) is a real variable, \(f(x) \) is a real-valued function. Find the intervals of convergence of the series.
 (a) \(f(x) = \frac{1}{\sin x} \)
 (b) \(f(x) = \frac{1}{\sin x + 2} \)

3. (a) Formulate and prove the Argument Principle.
 (b) Show that it implies the Fundamental Theorem of Algebra.

4. Calculate the following integrals
 (a) \(\int_0^\infty \frac{\sin x}{x} \, dx \)
 (b) \(\int_0^\infty \frac{x^{\sqrt{2}}}{x+1} \, dx \)

5. Suppose domain \(D \) (of the \(x,y \)-plane) is mapped onto domain \(\Delta \) (of the \(\xi,\eta \)-plane) by an analytic function \(f: \xi + i\eta = f(x + iy) \), and \(f'(x + iy) \neq 0 \) at any point \((x,y) \in D \).
 (a) Explain why this map preserves “small” shapes (and so, the map can be called *conformal*).
 (b) Explain why this map preserves the form of the Laplace equation.