UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Algebraic Topology Aug 18, 2020.

Instructions. Answer as many questions as you can. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a low pass you need to solve *completely* at least two problems and score at least 25 points.

- 1. Let X be a connected cell complex and $f : \mathbb{R}P^{2n} \to X$ a covering map from the real projective space of dimension 2n. Show that f is a homeomorphism.
- 2. Let $x_0 \in \mathbb{R}P^2$ be a basepoint and view the wedge $\mathbb{R}P^2 \vee \mathbb{R}P^2$ as the subspace of the product $\mathbb{R}P^2 \times \mathbb{R}P^2$ where at least one coordinate is x_0 .
 - (a) Use the Seifert-van Kampen theorem to compute $\pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2)$.
 - (b) Prove that $\mathbb{R}P^2 \vee \mathbb{R}P^2$ is not a retract of $\mathbb{R}P^2 \times \mathbb{R}P^2$.
- 3. Describe a cell structure on the real projective space $\mathbb{R}P^n$. For each cell define its attaching map.
- 4. Recall that the mapping torus of a map $f: X \to X$ is the quotient space T_f obtained from $X \times [0, 1]$ by identifying (x, 1) with (f(x), 0) for every $x \in X$. Compute the homology groups of T_f when $f: S^n \to S^n$ is a map of degree d and n > 1.
- 5. Let G be a finite group of order d and $\phi : F_n \to G$ an epimorphism from the free group of rank n. Show that $Ker(\phi)$ is a free group and compute its rank.
- 6. Let S_g denote an orientable surface of genus g. So for example S_0 is the 2-sphere and S_1 is the torus.
 - (a) If g > 0 show that every map $S_0 \to S_g$ is null-homotopic.
 - (b) If g > h > 0 show that every map $S_h \to S_g$ has degree 0, but show by example that there exist maps that are not null-homotopic.