Qualifying Exam

Analysis of Numerical Methods I, August 2021

Instructions: This exam is closed book, no notes, and no electronic devices or calculators are allowed. You have two hours and you will be graded on work for only 3 out of the 4 questions below. All questions have equal weight and a cumulative score of 65% or more on your 3 graded questions is considered a pass. A cumulative score of 80% or greater is considered a high pass. Indicate clearly the work and the 3 questions that you wish to be graded.

Problem 1. (Matrix properties)

For each of the following statements, either prove that it is true, or show it's false with a counterexample.
a. For $A \in \mathbb{C}^{m \times n}$ any matrix, and $U \in \mathbb{C}^{m \times m}$ any unitary matrix, then $\|U A\|_{2}=\|A\|_{2}$.
b. For $A \in \mathbb{C}^{n \times n}$ any matrix, if $\rho(A)=0$, then $A=0$. (Recall that $\rho(A)$ is the spectral radius of A, i.e., the maximum of the moduli of the eigenvalues of A.)
c. For $A \in \mathbb{C}^{m \times n}$ any matrix with $m \geq n$, then the squared singular values of A equal the eigenvalues of $A^{*} A$.

Problem 2. (Moore-Penrose pseudo-inverse)
Let $A \in \mathbb{C}^{m \times n}$ have rank r and reduced SVD

$$
A=\widetilde{U} \widetilde{\Sigma} \widetilde{V}^{*}
$$

The Moore-Penrose pseudoinverse of A is defined as

$$
A^{+}=\widetilde{V} \widetilde{\Sigma}^{-1} \widetilde{U}^{*}
$$

a. In the induced matrix ℓ^{2} norm $\|\cdot\|$, is the operation $A \mapsto A^{+}$well-conditioned? That is, given an arbitrary but fixed A and a perturbation matrix B, is $\|(A+B)^{+}-$ $A^{+}\|/\| A^{+} \|$controllable by $\|B\| /\|A\|$? Prove it, or give a counterexample.
b. If $m \geq n$ and A has full rank n and $b \in \mathbb{C}^{m}$ is a given vector, prove that $x=A^{+} b$ is identical to the least-squares solution z of the over-determined linear system $A z=b$.

Problem 3. (Finite difference formulas)
Given $h>0$, compute weights $\left\{w_{j}\right\}_{j=0}^{2}$ for the following one-sided finite difference formula for the first derivative $f^{\prime}(x)$:

$$
\begin{aligned}
f^{\prime}(x) & \approx \sum_{j=0}^{2} w_{j} f(x+j h) \\
& =w_{0} f(x)+w_{1} f(x+h)+w_{2} f(x+2 h)
\end{aligned}
$$

What is the order of accuracy of your formula?
Problem 4. (Quadrature rules)
Compute the weights $\left\{A_{0}, A_{1}, B_{0}, B_{1}\right\}$ for a 4 -point quadrature rule of the form

$$
\int_{0}^{1} f(x) d x \approx A_{0} f(0)+A_{1} f(1)+B_{0} f^{\prime}(0)+B_{1} f^{\prime}(1)
$$

that is exact when f is any polynomial of degree 3 or less.

