Ph.D. Qualifying Examination in Statistics August, 2008

You need at least 50 points to pass.

- 1. Let U_1, U_2, \ldots, U_n be independent random variables uniform on [0,1] and let $U_{1,n} \leq U_{2,n} \leq \ldots \leq U_{n,n}$ be the corresponding order statistics.
- a. Compute the asymptotic distribution of $nU_{2,n}$. (5 points)
- b. Show that $nU_{1,n}$ and $n(1-U_{n,n})$ are asymptotically independent. (5 points)
- 2. Let $y_i = \alpha x_i + \epsilon_i, 1 \le i \le n$, where $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are independent identically distributed normal $N(0, \sigma^2)$ random variables.
- a. Determine the maximum likelihood estimators for α and σ^2 . (5 points)
- b. Compute the distribution of the maximum likelihood estimator for α . (5 points)
- c. Compute the distribution of the maximum likelihood estimator for σ^2 . (5 points)
- 3. Let X and Y be two independent random variables with distribution functions F and G and density functions f and g.
- a. Determine the distribution function of XY. (5 points)
- b. Does XY always have a density function? (5 points)
- c. Assuming that XY has a density function, compute it. (5 points)
- 4. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables with density function

$$f(t;\theta) = \begin{cases} 0, & \text{if } t < \theta \\ e^{-(t-\theta)}, & \text{if } t > \theta. \end{cases}$$

- a. Find a moment estimator for θ . (5 points)
- b. Find the maximum likelihood estimator for θ . (5 points)
- c. Determine the asymptotic efficiency between the two estimators. (5 points)
- 5. The number of customers entering a store on a given day is a Poisson random variable with parameter θ . The money spent by a customer is uniformly distributed on $[0, \eta]$. The number of customers and the money spent in the store are independent. We observe Z_1, Z_2, \ldots, Z_n , the total spending (the money collected by the store) on n days. We can assume that Z_1, Z_2, \ldots, Z_n are independent.
- a. Provide estimators for θ and η using the method of moments. (10 points)
- b. Provide estimators for θ and η using the likelihood method. (10 points)
- 6. Let Φ and ϕ denote the standard normal distribution and density functions.
- (a) Prove that for all x > 0

$$1 - \Phi(x) \le \frac{1}{r}\phi(x).$$

(5 points)

Let $X_{1,n} \leq X_{2,n} \leq \ldots \leq X_{n,n}$ denote the order statistics from a sample of n independent identically distributed standard normal random variables.

- (b) Show that $X_{n,n}$ converges in probability to infinity. (5 points)
- (c) Show that for all $\epsilon > 0$

$$\lim_{n \to \infty} P\{X_{n,n} \le \sqrt{(2+\epsilon)\log n}\} = 1.$$

(5 points)

- 7. Let X_1, \ldots, X_n be independent identically distributed Poisson random variables with parameter θ_1 . Let Y_1, \ldots, Y_m be independent identically distributed Poisson random variables with parameter θ_2 . We assume that the two samples are independent. We wish to test $H_0: \theta_1 = \theta_2$ against the alternative that H_0 is not true.
- a. Derive the likelihood ratio test. (5 points)
- b. Provide a large sample approximation for the rejection region. (2 points)
- 8. Let X_1, \ldots, X_n be independent identically distributed random variables with distribution function F. We assume that F is strictly increasing and continous on its support. Let $x_{1/2}$ denote the median.
- a. Find a 1α confidence interval for $x_{1/2}$. (5 points)
- b. Provide a large sample approximation for the confidence interval. (5 points)
- 9. Let X_1, \ldots, X_N be independent random variables. The distribution of X_i is binomial (n_i, p_i) . We wish to test $H_0: p_1 = p_2 = \ldots = p_N$ agains the alternative that H_0 is not true.
- a. Derive the likelihood ratio test. (5 points)
- b. Provide a large sample approximation for the rejection region. (2 points)