PhD qualifying exam in statistics-2015, Summer

You need to collect at least 60 points to pass the exam. You will get 10 points for the correct solution of each question.

1. Let X_1, X_2, \ldots, X_n be independent, random variables with density functions

$$h(t; \theta_i) = \begin{cases} \frac{1}{\theta_i} e^{-t/\theta_i}, & \text{if } 0 \le t < \infty \\ 0, & \text{if } -\infty < t < 0. \end{cases}$$

We wish to test $H_0: \theta_1 = \theta_2 = \dots \theta_n$ against the alternative that H_0 is not true.

- (a) Compute λ , the generalized likelihood ratio and explain the application of the generalized likelihood test.
- (b) Provide a large sample approximation for $-2 \log \lambda$ under H_0 .
- 2. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables with density function

$$h(t; \theta) = \left\{ egin{array}{ll} rac{1}{ heta}, & ext{if} & 0 \leq t \leq heta \ 0, & ext{if} & t
otin [0, heta]. \end{array}
ight.$$

- (a) Compute the significance level.
- (b) Compute the power function.
- 3. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables with density function

$$h(t;\sigma) = \frac{1}{(2\pi\sigma^2)^{1/2}}e^{-(t-1)^2/2\sigma^2}.$$

We wish to test $H_0: \sigma = \sigma_0$ against $H_A: \sigma \neq \sigma_0$.

- (a) Find a test, using the generalized likelihood ratio λ .
- (b) Provide a large sample approximation for $-2 \log \lambda$ under H_0 .
- 4. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables with density function

$$h(t;\mu) = \frac{1}{(2\pi)^{1/2}}e^{-(t-\mu)^2/2}.$$

We wish to test $H_0: \mu \leq \mu_0$ against $H_A: \mu > \mu_0$. Find the uniformly most powerful test of size α .

5. Let X_1, X_2, \ldots, X_n be independent identically distributed normal $N(\mu_1, \sigma^2)$ random variables. Let Y_1, Y_2, \ldots, Y_m be independent identically distributed normal $N(\mu_2, \sigma^2)$ random variables. The two samples are independent. The parameters μ_1, μ_2, σ^2 are unknown. We wish to test $H_0: \mu_1 = \mu_2$. Show that the two sample t-test and the likelihood ratio test are equivalent.

1

6. Let X_1, X_2 be independent and identically distributed exponential (λ) random variables, i.e. the common density is

$$f(t) = \begin{cases} 0, & \text{if } t < 0 \\ \frac{1}{\lambda} \exp(-t/\lambda), & \text{if } t \ge 0. \end{cases}$$

Find the joint density function of

$$Y_1 = X_1 + X_2$$
 and $Y_2 = \frac{X_1}{X_1 + X_2}$.

- 7. We assume that the number of people entering a store follows a Poisson distribution with parameter λ . Every customer spends money in the store, independently of each other according to a uniform distribution on [10, 100]. We observe X, the total amount of money spent in the store on a given day.
 - (a) Estimate λ using the method of moments.
 - (b) Let assume that we have the stores income X_1, X_2, \ldots, X_n for n days and X_1, X_2, \ldots, X_n are independent and distributed as X. What would be the moment estimator for λ based on $X_1, X_2, ..., X_n$?
- 8. Let X and Y be independent random variables with densities f and g, where

$$f(t) = \begin{cases} 0, & \text{if } t < 0 \\ \frac{1}{2} \exp(-t/2), & \text{if } t \ge 0. \end{cases}$$

and

$$g(t) = \begin{cases} 0, & \text{if } t \notin [-1, 2] \\ \frac{1}{3}, & \text{if } t \in [-1, 2]. \end{cases}$$

Compute the density of X + Y.

9. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with den-

$$f(t) = \begin{cases} 0, & \text{if } t < 0 \\ \frac{1}{\lambda} \exp(-t/\lambda), & \text{if } t \ge 0. \end{cases}$$

Construct an equal tail $1-\alpha$ confidence interval for λ . Compute the expected value of the length of the confidence interval.

10. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with den-

$$f(t) = \begin{cases} 0, & \text{if } t < 0 \\ \frac{1}{\lambda} \exp(-t/\lambda), & \text{if } t \ge 0. \end{cases}$$

Find the uniformly minimum variance unbiased estimator for $\theta = 1/\lambda$.

- 11. Let U_1, U_2, \ldots, U_n be independent and identically distributed random variables, uniform on [0,1]. Let $U_{1,n} \leq U_{2,n}, \ldots, \leq U_{n,n}$ denote the order statistics.
 - (a) Compute the limit distribition of $Z = n(U_{3,n} U_{2,n})$.
 - (b) Show that $Z_1 = n(U_{3,n} U_{2,n})$ and $Z_2 = n(U_{4,n} U_{3,n})$ are asymptotically independent.

12. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with distribution function F. We wish to test that F is a normal distribution function. Provide at least two different methods on to test for the normality of F.

Discrete Distributions

$$f(x) = p^{x}(1-p)^{1-x}, x = 0, 1$$

$$M(t) = 1 - p + pe^t$$

$$\mu = p, \ \sigma^2 = p(1-p)$$

Binomial

$$f(x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}, x = 0, 1, 2, \ldots, n$$

$$M(t) = (1 - p + pe^t)^n$$

$$\mu = np$$
, $\sigma^2 = np(1-p)$

Geometric

$$f(x) = (1-p)^{x-1}p, x = 1, 2, ...$$

$$M(t) = \frac{pe^t}{1 - (1 - p)e^t}, \ t < -\ln (1 - p)$$

$$\mu=\frac{1}{p},\ \sigma^2=\frac{1-p}{p^2}$$

Hypergeometric

$$f(x) = \frac{\binom{n_1}{x}\binom{n_2}{r-x}}{\binom{n}{r}}, x \le r, x \le n_1, r-x \le n_2$$

$$\mu = r\left(\frac{n_1}{n}\right), \ \sigma^2 = r\left(\frac{n_1}{n}\right)\left(\frac{n_2}{n}\right)\left(\frac{n-r}{n-1}\right)$$

Negative Binomial

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x = r, r+1, r+2, \dots$$

$$M(t) = \frac{(pe^t)^r}{[1 - (1 - p)e^t]^r}, \ t < -\ln(1 - p)$$

$$\mu = r\left(\frac{1}{p}\right), \ \sigma^2 = \frac{r(1-p)}{p^2}$$

$$f(x)=\frac{\lambda^x e^{-\lambda}}{x!}, x=0, 1, 2, \ldots$$

$$M(t)=e^{\lambda(e^t-1)}$$

$$\mu = \lambda, \ \sigma^2 = \lambda$$

$$f(x) = \frac{1}{m}, x = 1, 2, \ldots, m$$

$$\mu = \frac{m+1}{2}, \ \sigma^2 = \frac{m^2-1}{12}$$

Continuous Distributions

Beta

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1$$

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$$

Chi-Square $\chi^2(r)$

$$f(x) = \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2-1} e^{-x/2}, \ 0 \le x < \infty$$

$$M(t) = \frac{1}{(1-2t)^{r/2}}, \ t < \frac{1}{2}$$

$$\mu = r$$
, $\sigma^2 = 2r$

Exponential

$$f(x) = \frac{1}{\theta} e^{-x/\theta}, \ 0 \le x < \infty$$

$$M(t) = \frac{1}{1 - \theta t}, \ t < 1/\theta$$

$$\mu = \theta, \ \sigma^2 = \theta^2$$

Gamma

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta}, \ 0 \le x < \infty$$

$$M(t) = \frac{1}{(1-\theta t)^{\alpha}}, \ t < 1/\theta$$

$$\mu = \alpha \theta, \ \sigma^2 = \alpha \theta^2$$

Normal $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-|(x-\mu)^2/2\sigma^2|}, -\infty < x < \infty$$

$$M(t) = e^{\mu t + \epsilon r^2 t^2/2}$$

$$E(X) = \mu$$
, $Var(X) = \sigma^2$

Uniform U(a, b)

$$f(x) = \frac{1}{b-a}, \ a \le x \le b$$

$$M(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}, t \neq 0; M(0) = 1$$

$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$$