Preliminary Exam, Numerical Analysis, January 2018

Instructions: This exam is closed book, no notes, and no electronic devices are allowed. You have three hours and you need to work on any three out of questions 1-4, and any three out of questions 5-8. All questions have equal weight and a score of 75% is considered a pass. Indicate clearly the work that you wish to be graded.

Problem 1. (Projections)

Let $P \in \mathbb{C}^{N \times N}$ be a projection matrix. Prove that $\ker(P) \perp \operatorname{range}(P)$ if and only if $P = P^*$. (I.e., you are being asked to justify the definition of an orthogonal projection matrix.)

Problem 2. (Hadamard's inequality) Let $A \in \mathbb{C}^{N \times N}$ be comprised of columns $a_i \in \mathbb{C}^N$, $i = 1, \ldots, N$. Prove that

$$|\det A| \le \prod_{i=1}^{N} ||a_i||_2.$$

You may use, for example, a QR decomposition/Gram-Schmidt argument.

Problem 3. (Quadrature)

Consider the quadrature rule

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx w_{-1} f(-1) + w_0 f(0) + w_1 f(1) + w_0' f'(0).$$

Compute weights w_{-1} , w_0 , w_1 , and w'_0 such that this quadrature rule is exact for polynomials up to degree 3.

Problem 4. (Finite difference formulas)

Given h > 0, compute weights w_j for the following 5-point finite difference formula for the *third* derivative $f^{(3)}(x)$:

$$f^{(3)}(x) \approx \sum_{j=-2}^{2} w_j f(x+jh)$$

= $w_{-2}f(x-2h) + w_{-1}f(x-h) + w_0f(x) + w_1f(x+h) + w_2f(x+2h).$

What is the order of accuracy of your formula?

Problem 5. (Absolute stability for ODEs)

For the ODE y' = f(y), and given p > 0, a linear multistep scheme has the form

$$\sum_{j=0}^{p} a_j y_{n+j} + \Delta t \sum_{j=0}^{p} b_j f(y_{n+j}) = 0$$

where Δt is the timestep, $a_p = 1$, and y_n is the numerical approximation to $y(t = n\Delta t)$, where the starting time is t = 0.

- a. Define the region of absolute stability for the above scheme.
- b. Compute and sketch the region of absolute stability for the backward (i.e., implicit) Euler scheme.

Problem 6. (Trapezoid rule)

For the ODE y' = f(t, y), the Trapezoid rule is

$$\frac{y_{n+1} - y_n}{\Delta t} = \frac{1}{2} \left(f(t_n, y_n) + f(t_{n+1}, y_{n+1}) \right).$$

Compute the region of absolute stability for the Trapezoid rule. Is this method A-stable?

Problem 7. (Unconditionally stable scheme) For the one-dimensional heat equation,

$$u_t = u_{xx},$$

consider the Crank-Nicolson, central difference scheme

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{1}{2} \left(\frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} + \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \right)$$

where Δt and h are temporal and spatial stepsizes, respectively, and where u_j^n is the numerical approximation to $u(x = jh, t = n\Delta t)$, with $x_0 = 0$ and the initial time t = 0. Use von Neumann stability analysis to show that this scheme is unconditionally stable.

Problem 8. (Central scheme)

Consider the one-dimensional advection equation,

$$u_t = c u_x,$$

where $c \in \mathbb{R}$ is the wavespeed. Use von Neumann stability analysis to determine the values of c for which the following the central difference, forward Euler scheme is stable:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = c \frac{u_{j+1}^n - u_{j-1}^n}{2h}$$