DEPARTMENT OF MATHEMATICS University of Utah Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY January 2012

Instructions: Do all problems from section A and all problems from section B. Be sure to provide all relevant definitions and statements of theorems cited.

A. Answer all of the following questions.

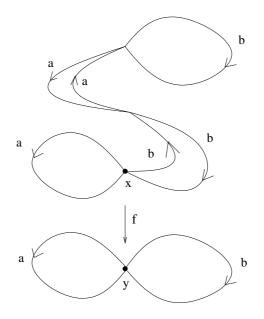
- 1. Show that $SL_n(\mathbb{R})$ is a manifold, and that it is a Lie group. (Do not use the theorem that any closed subgroup of a Lie group is a Lie group.)
- 2. Prove that a closed, orientable, genus 2 surface does not admit a 1-dimensional foliation.
- 3. Suppose that a is a smooth, real valued, compactly supported function on \mathbb{R}^n so that $\theta = adx_1 \wedge \cdots \wedge dx_n$ is an n-form on \mathbb{R}^n . What is the definition of $\int_{\mathbb{R}^n} \theta$? What's the definition of $\int_M \omega$ where ω is a compactly supported k-form on an oriented k-dimensional smooth manifold M? Show that this definition is well-defined.
- 4. State Stokes' Theorem.
- 5. State Frobenius' Theorem.
- 6. Let $f: M \to N$ be a smooth map between smooth manifolds, and let y be a regular value of this map. If M and N are compact, oriented, and have the same dimension, then what is the definition of deg(f; y), the degree of f measured at the value y? We have seen that the degree is independent of the regular value chosen, and an ingredient of that proof is the following lemma:

Suppose Q is a compact smooth manifold and that $\partial Q = M$. If $F : Q \to N$ is smooth, and z is a regular value of $F|_{\partial Q}$, then $deg(F|\partial Q; z) = 0$.

Prove the lemma.

B. Answer all of the following questions.

7. Below are pictured two graphs X, Y with basepoints x, y respectively and a covering map $f: X \to Y$ that takes edges to edges preserving labels and orientation.



Identify $\pi_1(Y, y)$ with the free group with basis $\{a, b\}$ as usual. Describe the image of $f_{\#}: \pi(X, x) \to \pi_1(Y, y)$.

- 8. Let X be the space obtained from the circle S^1 by attaching two 2-cells, one with degree 2 attaching map, and the other with degree 4 attaching map. What is the cardinality of the fundamental group of X? If you use van Kampen's theorem, state it.
- 9. Using any method you like, compute the homology groups of the space X from Problem 8.
- 10. Let X be a topological space and $A \subset X$ a subspace. Define relative homology $H_k(X, A)$ and the boundary homomorphism $H_k(X, A) \to H_{k-1}(A)$.
- 11. State the Excision Theorem for homology.
- 12. Let X be a topological space and $x \in X$. Assume that for some topological space L the point x has a neighborhood U in X which is homeomorphic to the open cone $cL = L \times [0, \infty)/L \times \{0\}$ by a homeomorphism that takes x to $L \times \{0\}$. Prove that $H_k(X, X - \{x\}) \cong \tilde{H}_{k-1}(L)$.
- 13. (a) The complex projective space $\mathbb{C}P^n$ can be obtained from $\mathbb{C}P^{n-1}$ by attaching a single 2n-cell. Describe the attaching map.
 - (b) What is $H^k(\mathbb{C}P^n)$ (integral coefficients)? Give a proof by induction on n using (a).
 - (c) What is the ring structure on $H^*(\mathbb{C}P^n)$? Give an inductive proof. You may use Poincaré duality.