Instructions: Do all problems from section A. Be sure to provide all relevant definitions and statements of theorems cited. To pass the exam you need to have at least 3 completely correct solutions in part A along with passing part B. If you don’t pass B but get 4 problems from part A correct you will have passed that section of the exam.

A. Answer all of the following questions.

1. (a) State the definition of a regular value and state the pre-image theorem.
(b) Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) be a smooth function with \(y \in \mathbb{R}^m \) a regular value and let \(M = F^{-1}(y) \). If \(f : \mathbb{R}^n \to \mathbb{R}^k \) is a smooth function and \(x \in M \) is critical point for \(f|_M \) what are the possible values for the dimension of \(\ker F^*(x) \cap \ker f^*(x) \)? (Here \(F^*(x) \) is the tangent map from \(T_x \mathbb{R}^n \to T_y \mathbb{R}^m \) and \(f^*(x) \) is also a tangent map.)
(c) Define \(G : \mathbb{R}^n \to \mathbb{R}^{m+k} \) by \(G(x) = (F(x), f(x)) \).
 (i) If \(z \in \mathbb{R}^k \) is regular value of \(f|_M \) is \((y, z) \in \mathbb{R}^{m+k} \) always a regular value of \(G \)?
 Give a proof or find a counterexample.
 (ii) If \(z \in \mathbb{R}^k \) is a regular of \(f \) (as a function on \(\mathbb{R}^n \)) is \((y, z) \in \mathbb{R}^{m+k} \) always a regular value of \(G \). Give a proof or find a counterexample.

2. Let \(M \) be a differentiable manifold. Prove that its tangent bundle \(TM \) and its cotangent bundle \(TM^* \) are isomorphic as smooth vector bundles.

3. Let \(V \) be a smooth vector field on \(\mathbb{R}^2 \) and assume that outside of a compact set \(V = \frac{\partial}{\partial x} \). Show that the flow for \(V \) is defined for all time.

4. (a) State Stokes theorem.
(b) If \(\omega \in \Omega^n(\mathbb{R}^n) \) has compact support and \(\int_{\mathbb{R}^n} \omega \neq 0 \) show that there does not exist an \(\alpha \in \Omega^{n-1}(\mathbb{R}^n) \) with compact support and \(d\alpha = \omega \).
(c) Now assume that \(n = 1 \) and that \(\int_{\mathbb{R}} \omega = 0 \). Find an \(\alpha \in \Omega^0(\mathbb{R}) \) with compact support and \(d\alpha = \omega \).

5. Let \(S^2 = \{(x, y, z) \in \mathbb{R}^3| x^2 + y^2 + z^2 \} \). Define \(\pi : \mathbb{R}^3 \setminus \{0\} \to S^2 \) by \(\pi(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right) \) and \(T_\epsilon(x, y, z) = (x, y, z + \epsilon) \). For \(\epsilon \in (0, 1) \) the map \(f_\epsilon = \pi \circ T_\epsilon \) is a Lefschetz map from \(S^2 \) to itself. Calculate its Lefschetz number and conclude every map of \(S^2 \) to itself that is homotopic to the identity has a fixed point. (Hint: It will be easier to calculate the derivative of \(\pi \) and \(T_\epsilon \) separately and use the chain rule to find the derivative of \(f_\epsilon \).

6. Let \(\omega \) and \(\eta \) be closed forms on a manifold \(M \). Show that the de Rham cohomology class of \(\omega \wedge \eta \) only depends on the cohomology classes of \(\omega \) and \(\eta \).