
UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

January 4th, 2016.

Instructions: This examination has two parts consisting of five problems in

part A and five in part B. You are to work three problems from

part A and three problems from part B. If you work more than the

required number of problems, then state which problems you wish

to be graded, otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must be

clearly and carefully presented and should be detailed as possible.

All problems are worth 20 points.

A. Ordinary Differential Equations: Do three problems for full credit

A1. The simple pendulum consists of a point particle of mass m suspended from a fixed point
by a massless rod of length L, which is allowed to swing in a vertical plane. If friction is
ignored then the equation of motion is

ẍ+ ω2 sinx = 0, ω2 =
g

L
,

where x is the angle of inclination of the rod with respect to the downward vertical and g
is the gravitational constant.

(a) Using conservation of energy, show that the angular velocity of the pendulum satisfies

ẋ = ±
√

2(C + ω2 cosx)1/2,

where C is an arbitrary constant. Express C in terms of the total energy of the system.

(b) Sketch the phase diagram of the pendulum equation in the (x, ẋ)-plane. Illustrate
the one-parameter family of curves given by part (a) for different values of C. Take
−3π ≤ x ≤ 3π. Indicate the fixed points of the system and the separatrices - curves
linking the fixed points. Give a physical interpretation of the underlying trajectories
in the two distinct dynamical regimes |C| < ω2 and |C| > ω2.

(c) Show that in the regime |C| < ω2, the period of oscillations is

T = 4

√
L

g
K(sinx0/2),

where ẋ = 0 when x = x0 and K is the complete elliptic integral of the first kind,
which is defined by

K(α) =

∫ π/2

0

1√
1− α2 sin2 u

du.

(d) For small amplitude oscillations, the pendulum equation can be approximated by the
linear equation

ẍ+ ω2x = 0.

Solve this equation for the initial conditions x(0) = A, ẋ(0) = 0 and sketch the phase-
plane for different values of A. Compare with the phase-plane for the full nonlinear
equation in part (b).
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A2. Suppose A(t) is a real n × n matrix function which is smooth in t and periodic of period
T > 0. Consider the linear differential equation in Rn

dx

dt
= A(t)x,

x(0) = x0.
(1)

Let Φ(t) be the fundamental matrix solution with Φ(0) = I.

(a) Define: Floquet Matrix, Floquet Multiplier and Floquet Exponent. How are these re-
lated to Φ(t)? State the necessary and sufficient conditions so that (1) has a nonzero
T -periodic solution.

(b) Prove that the zero solution is unstable for the system ẋ = A(t)x, where

A(t) =

1 1

0 ḣ(t)/h(t)

 ,

and h(t) = 2 + sin t− cos t.

A3. Consider Mathieu’s equation for a parametric oscillator:

ẍ+ (α+ β cos t)x = 0.

(a) Suppose that α ≈ 1, β ≈ 0. Use a perturbation expansion in β to show that the
transition curves for Mathieu’s equation are given approximately by

α = 1− β2

12
, α = 1 +

5

12
β2.

(b) Now suppose that α ≈ 1/4 + α1β, β ≈ 0. In the unstable region near α = 1/4,
solutions of Mathieu’s equation are of the form

c1eσtq1(t) + c1eσtq1(t)

where σ is real and positive, and q1, q2 are 4π–periodic. Derive the second order
equation for q1, q2 and perform a power series expansion in β to show that σ ≈
±β
√

1/4− α2
1.

(c) Use part (b) to deduce that solutions of the damped Mathieu equation

ẍ+ κẋ+ (α+ β cos t)x = 0,

where κ = κ1β +O(β2), are stable if to first order in β,

α <
1

4
− β

2

√
1− κ21 or α >

1

4
+
β

2

√
1− κ21.

A4. Consider a linear chain of 2N atoms consisting of two different masses m,M M > m, placed
alternately. The atoms are equally spaced with lattice spacing a with nearest neighbor
interactions represented by Hookean springs with spring constant β. Label the light atoms
by even integers 2n, n = 0, ..., N−1 and the heavy atoms by odd integers 2n−1, n = 1, ..., N .
Denoting their displacements from equilibrium by the variables U2n and V2n−1 respectively,
Newton’s law of motion gives

mÜ2n = β [V2n−1 + V2n+1 − 2U2n]

MV̈2n−1 = β [U2n + U2n−2 − 2V2n−1]

Assume periodic boundary conditions U0 = U2N and V1 = V2N+1.
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(a) Sketch the configuration of atoms and briefly explain how the dynamical equations
arise from Newton’s law of motion.

(b) Assuming a solution of the form

U2n = Φe2inkae−iωt, V2n+1 = Ψei(2n+1)kae−iωt,

derive an eigenvalue equation for the amplitudes (Φ,Ψ) and determine the eigenvalues.

(c) Using part (b), show that there are two branches of solution and determine the speed
w/k on the two branches for small k.

A5. (a) Give definitions for the following: invariant set, attracting set, ω-limit set.

(b) Determine the invariant sets and the attracting set of the dynamical system

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)

ż = α > 0.

Also sketch the flow.

(c) Describe what happens to the flow if we identify the points (x, y, 0) and (x, y, 2π) in
the planes z = 0 and z = 2π.

(d) By explicitly constructing solutions on the invariant torus x2 + y2 = 1, 0 ≤ z < 2π,
show that the torus is only an attractor if α is irrational.
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B. Partial Differential Equations. Do three problems to get full credit

B1. Suppose that the eigenvalues λn and normalized eigenfunctions φn(x) of the Dirichlet prob-
lem for the Laplacian in a bounded domain D are known: that is,

∇2φn = λnφn in D, φn = 0 on ∂D

for all integers n ≥ 0

(a) Using Green’s Theorem show that λn < 0.

(b) Derive the eigenfunction expansion of the Green’s function G(x,y) for the Helmholtz
equation

∇2G+ k2G = δ(x− y) in D, G = 0 on ∂D,

assuming that k2 + λn 6= 0 for all n ≥ 0.

(c) Now suppose that k2+λn = 0 for some n. Show how to construct a generalized Green’s
function by solving

(∇2 − λn)G(x,y) = δ(x− y) + cφn(x)φn(y)

via an eigenfunction expansion with a suitable choice of c.

B2. Consider the wave equation

utt − c2uxx = 0, t > 0, x ∈ R.

along with initial conditions

u(x, 0) = g(x), ut(x, 0) = h(x).

(a) Assuming c is constant, derive d’Alembert’s Formula

u(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct
h(ξ) dξ.

(b) Determine the solution for the initial data u(x, 0) = 1 if |x| < a, u(x, 0) = 0 if x > |a|;
ut(x, 0) = 0

(c) Determine the solution for the initial data u(x, 0) = 0; ut(x, 0) = 1 if |x| < a, ut(x, 0) =
0 if x > |a|

B3. Suppose that ρ(x, t) is the number density of cars per unit length along a road, x being
distance along the road, such that

∂ρ

∂t
+
∂[ρ(1− ρ)]

∂x
= 0.

(a) Show that ρ is constant along the characteristics

dx

dt
= 1− 2ρ,

and derive the following Rankine-Hugoniot condition for the speed of a shock x = S(t):

dS

dt
=

[ρ(1− ρ)]+−
[ρ]+−

.
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(b) A queue is building up at a traffic light x = 1 so that, when the light turns to green
at t = 0,

ρ(x, 0) =

{
0, if x < 0 and x > 1;

x, if 0 < x < 1.

Solve the corresponding characteristic equations, and sketch the resulting characteristic
curves. Deduce that a collision first occurs at x = 1/2 when t = 1/2, and that thereafter
there is a shock such that

dS

dt
=
S + t− 1

2t
.

B4. Suppose that u(x) is a C2 harmonic function in the domain Ω ⊂ Rn, so ∆u = 0 in Ω.

(a) Prove the mean value property: if x ∈ Ω and r > 0 is chosen such that Br(x) ⊂ Ω
(ball of radius r centered at x) then

u(x) =
1

ωnrn−1

∫
∂Br(x)

u(s)ds,

where ωn is the measure of ∂B1. Hence show that

u(x) ≤ n

ωnrn

∫
Br(x)

u(y)dy.

(b) Assuming Ω is connected, prove that u can attain its maximum value at an interior
point x ∈ Ω, only if u is constant.

B5. Consider the equation
∂u

∂t
+

∂

∂x

(
u2

2

)
= ε

∂2u

∂x2
,

for −∞ < x <∞ and t > 0.

(a) Look for a traveling wave solution u(x, t) = U(z), z = (x− V t)/ε, with velocity V > 0
and U(z)→ U± as z → ±∞. Solve the resulting ODE for U(z) and deduce that

V =
[U2/2]∞−∞

[U ]∞−∞

(b) Discuss how the traveling wave solution relates to shock solutions of the quasilinear
equation obtained by setting ε = 0.

(c) Using phase-plane analysis, show that the wave profile U is monotonically decreasing,
that is, dU/dz < 0.
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