PhD Preliminary Qualifying Examination Applied Mathematics

January, 2014

Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

Part A.

- 1. Consider the problem $u''(x) = x\delta'(x)$, where δ is the "delta function". Explain what it means for this problem to have a solution u in the sense of distributions. Find a distributional solution u and prove that it does in fact solve the problem in the sense of distributions.
- 2. Let A be a real $m \times n$ matrix, and let $b \in \mathbb{R}^m$ be a column vector. Consider the problem

$$A^*Ax = A^*b. \quad (*)$$

(a) Explain the relationship between (*) and the problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2.$$

- (b) Under what conditions on A, A^* , and b is it guaranteed that (*) has a solution x? Under what conditions is it guaranteed that (*) has a unique solution?
- (c) Given $\epsilon > 0$, consider the problem

$$(A^*A + \epsilon I)x_{\epsilon} = A^*b. \quad (**)$$

Formulate an associated minimization problem, describe existence and uniqueness, and explain how $\lim_{\epsilon \to 0^+} x_{\epsilon}$ is related to solutions of (*).

- 3. Consider the problem u''(x) = f(x), on (0, 1), with boundary conditions u'(0) = u'(1) = 0.
 - (a) Write down the weak formulation of the problem.
 - (b) Using a piecewise linear finite element basis with uniform grid size h, use the Galerkin method to find a finite-dimensional (matrix) approximate representation for the problem. Do not solve the equations.
 - (c) Neither of the problems (a) and (b) have unique solutions in general. Explain why not, and describe what can be done to correct the deficiency.

4. Define
$$Ku(x) = \sum_{n=0}^{10} \left(\int_{-1}^{1} e^{-ny} u(y) \, dy \right) x^n$$
, for $x \in [-1, 1]$.

- (a) Find the adjoint K^* of the operator K.
- (b) Assuming $\lambda \neq 0$ is fixed and real, use the Fredholm Alternative to characterize the set of functions g such that the problem $(K \lambda I)u = g$ on [-1, 1] has a solution.
- (c) From the structure of the operator K, what can be said about the set $\sigma_p = \{\lambda \in \mathbb{C} : (K \lambda I)u = 0 \text{ has a solution } u \neq 0\}$? There is no need to actually calculate σ_p .
- 5. Construct the Green's function for the problem

$$u''(x) + \alpha^2 u(x) = f(x)$$
, on $(0, 1)$, $u(0) = u(1) = 0$.

Write the solution u in terms of the Green's function, and determine values of α for which the Green's function does not exist.

Part B.

1. The function f(z) is analytic in the extended complex plane except for two points z = 0 and z = 2, where it has simple poles. It is known that

$$\oint_{|z|=1} f(z)dz = 1, \qquad \oint_{|z|=3} f(z)dz = 0.$$

Find f(z) (unique up to an arbitrary additive constant).

2. Find the radius of convergence of the Taylor series

for the function
$$f(x) = \frac{1}{\cos^2 x + 4}$$
 around the origin $x_0 = 0$.

{You do not need to find the Taylor series itself.}

3. Evaluate the integral

$$\int_0^\infty e^{ix^2} dx.$$

4. Find the leading behavior of the integral

$$I = \int_0^3 \frac{\cos x}{\sqrt{x}} e^{-sx} \, dx$$

for large positive s.

5. Formulate and prove Morera's theorem.