PhD Preliminary Qualifying Examination:
Applied Mathematics
August 19, 2008

Instructions: Answer three questions from part A and three questions trom
part B. Indicate clearly which questions yvou wish to have graded.

Part A.

1. Find a singular value decomposition and pseudoinverse of the matrix
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2. {a) Explain what is meant by a Cauchy sequence, Completeness of a space, and a Hilbert
space {you can assume the definitions of nor, inner product, and linear space are known}.
(b) Prove that the set of continuous functions on the interval [a, 0] s complete with respect

to the uniform norm
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3. Prove that if a linear operator K can be approximated {in the operator norm) by a sequence
of compact operators K, with ,
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then K is a compact operator.
4. On the interval [0, 1] use elgenfunctions to find the resolvent of the integral equation
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When does a solution not exist? Write down the prendoresolvent in this case.

. {a) Using Green’s functions, find the solution to the eguation
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(b} Find the necessary and sufficient condition on f{z) for a solution to
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Part B.
1. Find a solution u(z.y) of Laplace’s equation in 2 dimensions for which w(z.0) = |xi

2. Evaluate the integral
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3. Solve the integral equation
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with k(z) = H{x). the Heaviside function.

4. Solve the system of equations
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with w,(t = 0) = sin 3%, with k an integer.
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5. Find the leading term of the asymptotic expansion of the integral
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as well as a rigorous estimate of the error.



