University of Utah, Department of Mathematics January 2013, Algebra Qualifying Exam

Show all your work and provide reasonable proofs/justification. You may attempt as many problems as you wish. Five correct solutions count as a pass; ten half-correct solutions may not!

- (1) Determine the number of Sylow *p*-subgroups of $GL_2(\mathbb{F}_p)$.
- (2) Show that $(\mathbb{Q}/\mathbb{Z}, +)$ has one and only one subgroup of order n, for each integer $n \ge 1$, and that this subgroup is cyclic.
- (3) Determine representatives for the conjugacy classes in $GL_3(\mathbb{F}_2)$.
- (4) Let R be a commutative ring with $1 \neq 0$. Recall that the nilradical of R is the ideal $\mathfrak{N}(R) = \{x \in R : x^n = 0 \text{ for some positive integer } n\}$. Prove that the following are equivalent:
 - (i) R has exactly one prime ideal;
 - (ii) $R/\mathfrak{N}(R)$ is a field.
- (5) If I, J are ideals in the commutative ring R, prove that

$$R/I \otimes_R R/J \cong R/(I+J),$$

as R-modules.

- (6) In the category of Z-modules:
 (a) Is Z injective?
 (b) Is Z/8Z projective?
- (7) Show that if p is an odd prime, the polynomial $x^{p^n} x + 1$ is irreducible over \mathbb{F}_p only when n = 1.
- (8) Show that $f(x) = x^4 + 4x^2 + 2$ is irreducible over \mathbb{Q} , and find its Galois group over \mathbb{Q} .
- (9) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n \geq 4$ and let K be a splitting field of f over \mathbb{Q} . Suppose that $\operatorname{Gal}(K/\mathbb{Q})$ is the symmetric group S_n . If $\alpha \in K$ is a root of f(x), show that $\alpha^n \notin \mathbb{Q}$.
- (10) Let A be a real $n \times n$ matrix. We say that A is a difference of two squares if there exist real $n \times n$ matrices B and C with BC = CB = 0 and $A = B^2 C^2$.
 - (a) If A is a diagonal matrix, show that it is a difference of two squares.
 - (b) If A is a symmetric matrix that is not necessarily diagonal, again show that it is a difference of two squares.
 - (c) Suppose A is a difference of two squares, with corresponding matrices B and C as above. If B has a nonzero real eigenvalue, prove that A has a positive real eigenvalue.