Show all your work, and provide reasonable justification for your answers. You may attempt as many problems as you wish; five correct solutions count as a pass.

1. Determine, up to isomorphism, the groups of order 44.

2. Prove that there is no simple group of order 192.

3. Let $R = \mathbb{Q}[x, y]$ and let $I = \langle x, y \rangle$. Compute the vector space rank of $\text{Ext}^1_R(I, R)$ over \mathbb{Q}.

4. Let M be a 3×3 complex matrix with $M^6 = M^4$ and $M^4 + M^2 = 2M^3$. Determine possible Jordan forms of M.

5. (i) List the prime ideals of the ring $R = \mathbb{Z}[x, y]/\langle 3 + x, y(y - 1) + x^2, x \rangle$.

(ii) Give an example of an integral domain with exactly 2 prime ideals.

6. Suppose that $R = \mathbb{Z}[i]$ is the Gaussian integers (here i is a square root of -1). Let M and N be finitely generated R-modules such that $M \oplus R^{\oplus 2} \oplus R/\langle 2 \rangle \cong N \oplus R \oplus R/\langle 1 + i \rangle \oplus R \oplus R/\langle 1 - i \rangle$.

Is it true that $M \cong N$?

7. Prove that $\mathbb{F} = \mathbb{Z}[t]/\langle 3, t^3 - t^2 + 1 \rangle$ is a field. Find the number of solutions of $x^{13} + 1 = 0$ in \mathbb{F}, and also the number of solutions of $x^{13} - 1 = 0$ in \mathbb{F}.

8. Compute the Galois group of $x^4 - 2$ over \mathbb{Q}.

9. Let E be the splitting field of $f(x) = x^{14} + 1$ over \mathbb{F}_2, and let K be the splitting field $g(x) = x^{21} + 1$ over \mathbb{F}_2.

Prove that K contains an isomorphic copy of E, and compute the extension degree of K over E.

10. Let $f(x)$ be a degree 5 polynomial in $\mathbb{Q}[x]$ that is not solvable by radicals. Let L be its splitting field over \mathbb{Q}.

(i) Prove that there is at most one field K with $\mathbb{Q} \subset K \subset L$ and $[K : \mathbb{Q}] = 2$.

(ii) If α, β are irrational elements in L such that α^2 and β^2 are rational, prove that $\alpha\beta$ is rational.