Percolation in sea ice

Kenneth M. Golden

Department of Mathematics
University of Utah
Salt Lake City, Utah 84112

Sea ice is a composite of pure ice with brine and air inclusions. It is distinguished from many other porous media, such as sandstones or bone, in that its microstructure and bulk material properties depend strongly on temperature. Above a critical value of around -5 degrees C, sea ice is permeable, allowing transport of brine, nutrients, biomass, and heat through the ice. These processes play an important role in air-sea-ice interactions, in the life cycles of sea ice algae, and in remote sensing of the pack. Recently we have used percolation theory to model the transition in the transport properties of sea ice. We give an overview of these results, and how they explain data taken in Antarctica. We also describe recent work on electromagnetic remote sensing of sea ice, and how percolation processes come into play.