1

Abstract

Critical Behaviour of Thermal Relaxation in Composites

C. D. MUKHERJEE and K. K. BARDHAN[¶]

ECMP Division Saha Institute of Nuclear Physics 1/AF Bidhannagar Kolkata 700 064 India

bardhan@cmp.saha.ernet.in

Received: Fri, 15 Mar 2002 07:38:53

At a composition far above the percolation threshold, the resistance of a composite sample increases with time as a constant current is passed through the sample due to Joule heating. For a current less than the breakdown current, the resistance eventually reaches a steady value. The increase is found to be well described by a simple first-order exponential term with a characteristic relaxation time τ_h . Similarly, when the sample is allowed to cool down from the steady state by reducing the constant current to a small value the resistance relaxation is again described by a first-order exponential with a relaxation time τ_c which is however different from τ_h . Thus, relaxations during heating and cooling appear to possess different characteristic times. Both τ_h and τ_c exhibit critical behaviour as a function of the current *I*. Interestingly, it is found that the product $\tau_h \tau_c$ is a constant independent of *I*. τ_h diverges with *I* as $\tau_h \sim (1 - I^2/I_b^2)^{-\alpha}$ where I_b is the breakdown current and α is an exponent equal to 0.14. Consequently, τ_c goes to zero as *I* approaches I_b . Attempts to understand this unusual phenomena will be discussed.

¶Presenter