Topological Properties of Diffeomorphism Groups

of Non-Compact Manifolds

Tatsuhiko Yagasaki

(Kyoto Institute of Technology, Japan)

Dubrovnik VII – Geometric Topology Inter-University Centre in Dubrovnik Dubrovnik, Croatia July 1st, 2011

§.1. Main Problem

Local and Global Topological Properties of

Diffeomorphism Groups of **Non-Compact** C^{∞} *n*-Manifolds

Typical Topologies :

- (1) The Compact-Open C^{∞} Topology
- (2) The Whitney Topology

(Joint Works with T. Banakh, K. Mine and K. Sakai)

1

Compact-Open C^{∞} Topology \longleftrightarrow Tychonoff Products \cdot Weak Products of ℓ_2 Whitney C^{∞} Topology \longleftrightarrow Box Products \cdot Small Box Products of ℓ_2

Notations

M : Connected C^∞ $n\text{-}\mathrm{Manifold}$

 $\mathcal{D}(M) =$ Group of Diffeomorphisms of M

When M has Volume form ω ,

 $\mathcal{D}(M;\omega) =$ Subgroup of ω -Preserving Diffeomorphisms of M

 $\mathcal{G}(M) \subset \mathcal{D}(M)$: any subgroup

(1) $\mathcal{G}^+(M)$: Orientation - Preserving

 $\mathcal{G}^{c}(M)$: Compact Support

(2) when $\mathcal{G}(M)$ is endowed with a topology

 $\mathcal{G}(M)_0$: Connected Component of id_M in $\mathcal{G}(M)$

 $\mathcal{G}(M)_1$: Path Component of id_M

(3)
$$\mathcal{G}^{c}(M)_{1} \supset \mathcal{G}^{c}(M)_{1}^{*} = \begin{cases} h \in \mathcal{G}^{c}(M) \mid \exists \text{ a path } h \overset{h_{t}}{\simeq} \operatorname{id}_{M} \text{ in } \mathcal{G}^{c}(M) \\ \text{with Common Compact Support} \end{cases}$$

§.2. Properties of Compact-Open C^{∞} Topology

When M is Compact $\mathcal{D}(M$) : Fréchet manifold (Top l_2 -manifold)
$\mathcal{D}^{+}(M) \supset \mathcal{D}(M)_{0}$ $\mathbf{SDR} \cup \mathbf{SDR} \cup$ $\mathcal{D}(M;\omega) \supset \mathcal{D}(M;\omega)_{0}$	$ \qquad \qquad$
When M is Non-Compact Theorem 2.1.	$c_0^{\omega} : \mathcal{D}(M;\omega)_0 \longrightarrow \mathcal{S}(M;\omega)$ End-Charge Homo.
$\mathcal{D}^{+}(M) \supset \mathcal{D}(M)_{0}$ $\cup \qquad \mathbf{SDR} \cup$ $\mathcal{D}(M;\omega) \supset \mathcal{D}(M;\omega)_{0} \qquad \bigcirc$	$\supset \qquad \mathcal{D}^{c}(M)_{0} \supset \mathcal{D}^{c}(M)_{1}^{*}$ $\cup \qquad \qquad \cup$ $\ker c_{0}^{\omega} \supset \mathcal{D}^{c}(M;\omega)_{0} \supset \mathcal{D}^{c}(M;\omega)_{1}^{*}$

Parametrized version of Moser's Thm for Non-Compact Manifolds Continuous Section of End-Charge Homo.

Moser's Thm for Compact Manifolds
 + Realization of data of transfer of Volume toward Ends by Diffe's

Remaining Problems

 $\mathcal{D}(M)_{0} \supset \mathcal{D}^{c}(M)_{1}^{*}$ $\text{SDR} \cup \bigcup$ $\mathcal{D}(M;\omega)_{0} \supset \text{ker} c_{0}^{\omega} \supset \mathcal{D}^{c}(M;\omega)_{1}^{*}$ $[1] \text{ Homotopy / Topological Type of } \mathcal{D}(M)_{0} \text{ and } \mathcal{D}(M;\omega)_{0}$ $[2] \text{ Relations between } \mathcal{D}(M)_{0} \supset \mathcal{D}^{c}(M)_{1}^{*}$ $\ker c_{0}^{\omega} \supset \mathcal{D}^{c}(M;\omega)_{1}^{*}$

In n = 2 we can answer these questions.

2-dim case

M: Non-Compact Connected C^∞ 2-Manifold without Boundary Exceptional Case — Plane, Open Möbius Band and Open Annulus Generic Case — All Other cases

[1] Homotopy / Topological Type of $\mathcal{D}(M)_0$ and $\mathcal{D}(M;\omega)_0$

Theorem 2.2.

- (1) $\mathcal{D}(M)_0$: Topological ℓ_2 -Manifold
- (2) (i) Generic Case : $\mathcal{D}(M)_0 \simeq * \qquad \mathcal{D}(M)_0 \approx \ell_2$ (ii) Exceptional Case : $\mathcal{D}(M)_0 \simeq \mathbb{S}^1 \qquad \mathcal{D}(M)_0 \approx \ell_2 \times \mathbb{S}^1$

Theorem 2.3.

- (1) $\mathcal{D}(M;\omega)_0$: Topological ℓ_2 -Manifold
- (2) (i) Generic Case : $\mathcal{D}(M;\omega)_0 \approx \ell_2$
 - (ii) Exceptional Case : $\mathcal{D}(M;\omega)_0 \approx \ell_2 \times \mathbb{S}^1$

|5|

[2] Subgroups $\mathcal{D}^{c}(M)_{1}^{*}$ and $\mathcal{D}^{c}(M;\omega)_{1}^{*}$

Remark on $\mathcal{D}^c(M)_1^*$

(1) By Definition,

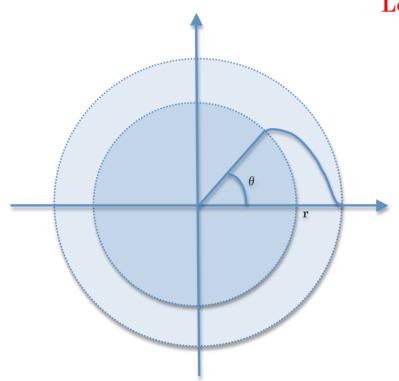
each $h \in \mathcal{D}^{c}(M)_{1}^{*}$ is Isotopic to id_{M} with Compact Support. (2) However,

a path in $\mathcal{D}^{c}(M)_{1}^{*}$ need **not** have Common Compact Support.

 $\circ h_i \to \mathrm{id}_M$ in $\mathcal{D}^c(M)_1^*$ if $\mathrm{Supp}\, h_i \to \infty$.

Example 1. $M = \mathbb{R}^2$ (1) $\mathcal{D}(\mathbb{R}^2)_0 \simeq \mathbb{S}^1$ This homotopy equivalence is induced from Loop of θ rotations $\varphi(\theta)$ ($\theta \in [0, 2\pi]$) (2) $\mathcal{D}^c(\mathbb{R}^2)_1^* = \mathcal{D}^c(\mathbb{R}^2) \subset \mathcal{D}(\mathbb{R}^2)_0$ False: $\mathcal{D}^c(\mathbb{R}^2) \simeq *$ by Alexander Trick $\exists \text{ Deformation } \varphi_t(\theta) \ (t \in [0, 1]) \text{ of } \varphi_0(\theta) \equiv \varphi(\theta)$ $\varphi_t(\theta) \in \mathcal{D}^c(\mathbb{R}^2) \text{ for } 0 < t \leq 1.$

We can take $\varphi_t(\theta)$ $(\theta \in [0, 2\pi])$ as **Loop of Truncated** θ rotations



Level of Truncation $r = r_t(\theta)$ $r = r_t(\theta)$ need to satisfy : (i) $r \to \infty$ as $\theta \to 2\pi$ (for each t > 0) (ii) $r \to \infty$ uniformly as $t \to 0$

$$\mathcal{D}^{c}(\mathbb{R}^{2}) \subset \mathcal{D}(\mathbb{R}^{2})_{0}$$
: HE
*

7

Example 2. M =Open Annulus

h: Dehn Twist on M along Center circle of M

(1)
$$h \in \mathcal{D}(M)_1 \setminus \mathcal{D}_c(M)_1^*$$

(2) \exists a path $h \stackrel{h_t}{\simeq} \operatorname{id}_M$ in $\mathcal{D}(M)_0$ s.t. $h_t \in \mathcal{D}_c(M)_1^*$ $(0 < t \le 1)$

(Introduce Reverse Dehn Twist from ∞)

9 Definition 2.1. $A \subset X$: Homotopy Dense (HD) $\iff \exists \varphi_t : X \to X :$ Homotopy s.t. $\varphi_0 = id_X, \ \varphi_t(X) \subset A \ (0 < t \leq 1)$ **Theorem 2.4.** $\mathcal{D}(M)_0 \supset \mathcal{D}^c(M)_1^*$: Homotopy Dense $\circ \mathcal{D}(M)_0 \supset \mathcal{D}^c(M)_0 = \mathcal{D}^c(M)_1 \supset \mathcal{D}^c(M)_1^*$: Homotopy Equi. $(\prod^{\omega} \ell_2, \sum^{\omega} \ell_2): \sum^{\omega} \ell_2 = \{(x_i)_i \in \prod^{\omega} \ell_2 \mid x_i = 0 \text{ except for finitely many } i\}$ $\prod^{\omega} \ell_2 \cong \ell_2$ Corollary 2.1. $\mathcal{G} = \mathcal{D}^{c}(M)_{0}$ or $\mathcal{D}^{c}(M)_{1}^{*}$ (1) $(\mathcal{D}(M)_0, \mathcal{G})$: Topological $(\prod^{\omega} \ell_2, \sum^{\omega} \ell_2)$ -manifold (2) (i) Generic Case : $(\mathcal{D}(M)_0, \mathcal{G}) \approx (\prod^{\omega} \ell_2, \sum^{\omega} \ell_2)$ (ii) Exceptional Case : $(\mathcal{D}(M)_0, \mathcal{G}) \approx (\prod^{\omega} \ell_2, \sum^{\omega} \ell_2) \times \mathbb{S}^1$

Theorem 2.5. ker $c_0^{\omega} \supset \mathcal{D}^c(M; \omega)_1^*$: Homotopy Dense

• $\ker c_0^{\omega} \supset \mathcal{D}^c(M;\omega)_0 = \mathcal{D}^c(M;\omega)_1 \supset \mathcal{D}^c(M;\omega)_1^*$: Homo. Equi.

§3. Properties of Whitney C^{∞} -Topology

(Joint Work with T. Banakh, K. Mine and K. Sakai)

M : Connected C^∞ n-manifold without Boundary

 $\mathcal{D}(M)^w = \mathcal{D}(M)$ with Whitney C^{∞} -topology

• $h \in \mathcal{D}(M)^w$ has Basic Nbds of the following form :

 $\bigcap_{\lambda \in \Lambda} \mathcal{U}(h, (U_{\lambda}, x_{\lambda}), (V_{\lambda}, y_{\lambda}), K_{\lambda}, r_{\lambda}, \varepsilon_{\lambda})$

where $\{U_{\lambda}\}_{\lambda \in \Lambda}$: Locally Finite in M

When M is Compact Whitney C^{∞} -Top = Compact-Open C^{∞} -Top

When M is Non-Compact

Whitney C^{∞} -Top : Too Strong (Compact-Open C^{∞} -Top : Too Weak)

(1) $\mathcal{D}(M)_0^w = \mathcal{D}^c(M)_1^* \subset \mathcal{D}^c(M)$ (as Sets)

(2) Any compact subset in $\mathcal{D}^{c}(M)^{w}$ has Common Compact Support. (any path) Local Top Type of $\mathcal{D}(M)^w$ and $\mathcal{D}^c(M)^w$

Theorem 3.1.

$\mathbb{R}^{\infty} = \lim_{n \to n} \mathbb{R}^n$

(1) $\mathcal{D}^{c}(M)^{w}$: Paracompact $(\ell_{2} \times \mathbb{R}^{\infty})$ -manifold (2) (i) $\mathcal{D}(M)_0^w \subset \mathcal{D}^c(M)^w$: Open Normal Subgroup (ii) $\mathcal{M}_c(M) := \mathcal{D}^c(M)^w / \mathcal{D}(M)_0^w$ (Discrete Countable Group) $\mathcal{D}^{c}(M)^{w} \approx \mathcal{D}(M)^{w}_{0} \times \mathcal{M}_{c}(M)$ (as Top Spaces) (3) $(M_i)_{i \in \mathbb{N}}$: Sequence of Compact C^{∞} *n*-Submanifolds of M s.t. $M_i \subset \operatorname{Int}_M M_{i+1}, M = \bigcup_i M_i$ $G(M_i) := \{h \in \mathcal{D}^c(M)^w \mid \operatorname{supp} h \subset M_i\}$ $\implies \mathcal{D}^{c}(M)^{w} = \operatorname{g-lim}_{i} G(M_{i})$ (Direct Limit in Category of Top Groups) • $\mathcal{D}^{c}(M)$ with **Direct Limit Top** : Not Top Group

Theorem 3.2. $(\mathcal{D}(M)^w, \mathcal{D}^c(M)^w) \approx_{\ell} (\Box^{\omega}, \boxdot^{\omega}) l_2$ at id_M

11

Theorem 3.3.

(1)
$$n = 1$$
: $(\mathcal{D}(\mathbb{R})^w, \mathcal{D}^c(\mathbb{R})^w) \approx (\Box^\omega, \boxdot^\omega) l_2$

(2)
$$n = 2$$
 : $\mathcal{D}(M)_0^w \approx l_2 \times \mathbb{R}^\infty$

(3) n = 3: M: Orientable, Irreducible $\implies \mathcal{D}(M)_0 \approx l_2 \times \mathbb{R}^{\infty}$

(4) X : Compact Connected C^{∞} *n*-manifold with Boundary

$$M = \operatorname{Int} X \implies \mathcal{D}(M)_0^w \approx \mathcal{D}(X, \partial X)_0^w \times \mathbb{R}^\infty$$

In n = 2 $\mathcal{M}_c(M) = \mathcal{D}^c(M)^w / \mathcal{D}(M)_0^w$

- S : Connected 2-manifold possibly with Boundary
 - (1) S : **Exceptional** \iff $S \approx N K$, where

N =Annulus, Disk or Möbius band

K = Non-empty Compact Subset of One Boundary Circle of X

(2) S : Semi-Finite Type

$$\begin{array}{l} \displaystyle \stackrel{\mathrm{def}}{\longleftrightarrow} S \approx N - (F \cup K) \ \text{s.t.} & N : \text{Compact connected 2-manifold} \\ \displaystyle \stackrel{K \subset N \setminus \partial N : \text{a finite subset}}{K \subset \partial N : \text{a compact subset}} \\ \end{array}$$

Proposition 3.1. The Following Conditions are Equivalent:

- (1) $\mathcal{M}_c(S) = \{1\}$ (2) $\mathcal{M}_c(S)$: Torsion Group
- (3) asdim $\mathcal{M}_c(S) = 0$ (4) S: Exceptional

Proposition 3.2. The Following Conditions are Equivalent:

- (1) $\mathcal{M}_c(S)$: finitely generated (or finitely presented)
- (2) $r_{\mathbb{Z}} \mathcal{M}_c(S) < \infty$ (3) asdim $\mathcal{M}_c(S) < \infty$
- (4) S : Semi-Finite Type
- S: Not Semi-Finite Type $\implies \mathbb{Z}^{\infty} \subset \mathcal{M}_c(S)$

(Free Abelian Group of Infinite Rank)

Idea of Proofs.

M : Non-compact C^∞ n-manifold without boundary

Notations

(a) $G_K(N) = \{g \in \mathcal{D}(M)^w \mid g = \text{id} \text{ on } K \text{ and } M \setminus N\}$ $(K, N \subset M)$ (b) Space of Embeddings : $(L \subset M)$ $\mathcal{E}^G(L, M) = \{h|_L \mid h \in \mathcal{D}(M)^w\}$ (Compact - Open C^∞ Top)

 $(i_L : L \subset M :$ the base point)

 $(M_i)_{i \in \mathbb{N}}$: Sequence of Compact *n*-Submanifolds of M

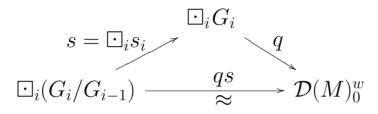
s.t. $M_i \subset \operatorname{Int}_M M_{i+1}, \ M = \bigcup_i M_i$

(1) $p: \boxdot_i G(M_i) \longrightarrow \mathcal{D}^c(M)^w$: the multiplication map

 $\implies p \text{ has a local section.} \qquad \mathcal{D}^{c}(M)^{w} = \operatorname{g-} \operatorname{\underline{lim}}_{i} G(M_{i})$ $L_{i} := M_{i} - \operatorname{Int}_{M} M_{i-1} \qquad (M_{0} = \emptyset)$ $(2) \quad (\mathcal{D}(M)^{w}, \mathcal{D}_{c}(M)^{w}) \approx_{\ell} (\Box, \boxdot)_{i} \mathcal{E}^{G}(L_{2i}, M) \times (\Box, \boxdot)_{i} G(L_{2i-1})$ $\approx_{\ell} (\Box, \boxdot)^{\omega} l_{2} \qquad \text{at id}_{M}$

(3) In n = 2

Apply Theorem A to $\mathcal{D}(M)_0^w$ and $G_i = G(M_i)_0 \ (i \in \mathbb{N})$:



 $\mathcal{D}(M)_0^w \approx \boxdot_i (G_i/G_{i-1}) \approx \boxdot_i \ell_2 \approx \ell_2 \times \mathbb{R}^\infty$

Remark.

In (3) we can also apply

Topological Characterization of $\ell_2 \times \mathbb{R}^{\infty}$

by T. Banakh - D. Repovš (arXiv:0911.0609) (2009 -)

Appendix. Box products and Small box products

A-1. Definitions and Basic Properties

$$(X_n)_n$$
: Box product : $\Box_n X_n$ = Product $\prod_n X_n$
Box Top : $\prod_n U_n$ $(U_n \subset X_n$: Open subset)

 $(X_n, *_n)_n : \qquad \text{Small box product} : \quad \boxdot_n(X_n, *_n) \subset \square_n X_n$ $(x_0, x_1, \dots, x_k, *_{k+1}, *_{k+2}, \dots)$

$$(\Box, \boxdot)_n X_n = (\Box_n X_n, \boxdot_n X_n) \qquad (\Box, \boxdot)^{\omega} X = (\Box, \boxdot)_{n \in \omega} X$$

(1) X_n : metrizable $\implies \Box_n X_n$: paracompact (2) $\Box^{\omega} \ell_2 \approx \ell_2 \times \mathbb{R}^{\infty}$ Top. Classification of LF spaces by P. Mankiewicz

(3) $\Box^{\omega}\ell_2$: not locally connected, not normal

A-2. Small box products of Top Groups

(1) $(G_n)_{n \in \omega}$: Top Groups $(e_n : \text{the identity element of } G_n)$ $\Box_n G_n : \text{Top Group}$ $\boxdot_n (G_n, e_n) \subset \Box_n G_n : \text{Top Subgroup}$

(2) G: Top group (e: the identity element of G) $(G_n)_{n \in \omega}$: Increasing Sequence of Subgroups of G s.t. $G = \bigcup_n G_n$

Multiplication maps

$$p: \boxdot_n G_n \longrightarrow G: \quad p(x_0, x_1, \dots, x_k, e, e, \dots) = x_0 x_1 \cdots x_k$$
$$q: \boxdot_n G_n \longrightarrow G: \quad q(x_0, x_1, \dots, x_k, e, e, \dots) = x_k \cdots x_1 x_0$$

Theorem A. (BMSY, arXiv:0802.0337v1 (2007 - 2008))

G: Top group (G_i) : Increasing Sequence of Closed Subgroups of G s.t. $G = \bigcup_i G_i$ $q: \boxdot_i G_i \to G: q(x_1, \ldots, x_m, e, e, \cdots) = x_m \cdots x_1$ $(*_1)$ $q: \boxdot_i G_i \to G:$ Open $(*_2) \quad \pi_i : G_i \xrightarrow{\longrightarrow} G_i / G_{i-1} \qquad \pi_i s_i = \mathrm{id}$

References

- T. Yagasaki, Groups of volume-preserving diffeomorphisms of noncompact manifolds and mass flow toward ends, Trans. AMS, 362 (2010), 5745-5770.
- [2] T. Banakh, K. Mine, K. Sakai and T. Yagasaki, Homeomorphism and diffeomorphism groups of non-compact manifolds with the Whitney topology, Topology Proceedings, 37 (2011) 61 - 93.
- [3] T. Banakh and T. Yagasaki,

The diffeomorphism groups of the real line are pairwise bihomeomorphic, Proceedings of "Infinite-Dimensional Analysis and Topology 2009" Special issue in Topology 48 (2009) 119 - 129.

- [*] T. Yagasaki, Homotopy types of diffeomorphism groups of noncompact 2-manifolds, arXiv:0109183v3.
- [*] T. Yagasaki, Topological ($\prod^{\omega} \ell_2, \sum^{\omega} \ell_2$)-factors of diffeomorphism groups of non-compact manifolds, arXiv:1003.2833.
- [*] T. Banakh and T. Yagasaki,

Diffeomorphism groups of non-compact manifolds endowed with the Whitney C^{∞} -topology, arXiv:1005.1789 (cf. arXiv:0802.0337v1)

End of Talk

Thank you very much !