Hairy graphs and the cohomology of Out(Fn)

James Conant, Martin Kassabov, Karen Vogtmann

Cyclic operads, Lie algebras and homology

Give me your favorite cyclic operad and I will make a Lie algebra, à la Kontsevich.

For at least some cyclic operads O, the homology of this Lie algebra is interesting for topologists/geometric group theorists

For $\mathcal{O} = Assoc$, it computes the cohomology of punctured mapping class groups [Kontsevich].

For $\mathcal{O} = \text{Lie}$, it computes the cohomology of $\text{Out}(F_n)$ [Kontsevich].

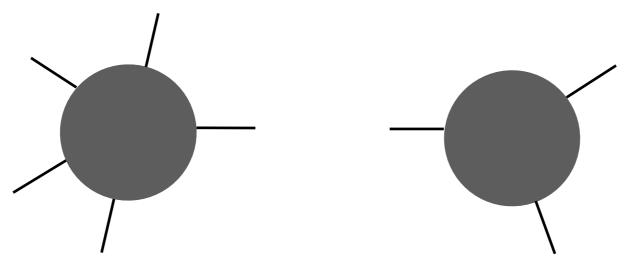
This talk is about a new way to construct cycles for the homology of these Lie algebras, using hairy graphs.

As an application, we find new cohomology classes for $Out(F_n)$

Outline of talk

- (1) Cyclic operads
- (2) The associated Lie algebra $\,\ell\,$ $_{\infty}$
- (3) Symplectic invariants and Kontsevich's theorem
- (4) The hairy graph complex and embedding $H_*(\ell_{\infty}) \hookrightarrow H_*(\mathcal{H})$
- (5) Compute $H_1(\boldsymbol{\ell}_{\infty})$ for $\mathcal{O} = Assoc$
- (6) Compute $H_1(\boldsymbol{\ell}_{\infty})$ for $\mathcal{O} = \text{Lie}$
- (7) Note the connection with modular forms.
- (8) New cohomology classes for $Out(F_n)$

Generated as a vector space by black boxes with numbered i/o slots:

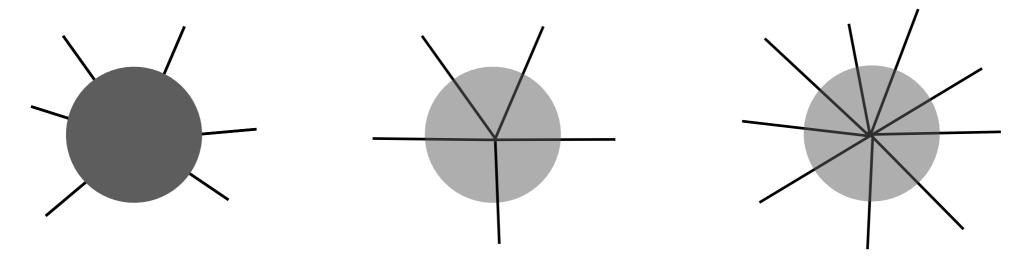


There is an operation merging boxes using an i/o slot from each

This operation obeys a very long list of natural rules including associativity, the existence of an identity and rules governing the interaction with the symmetric group action on i/o slot numbers.

EXAMPLES:

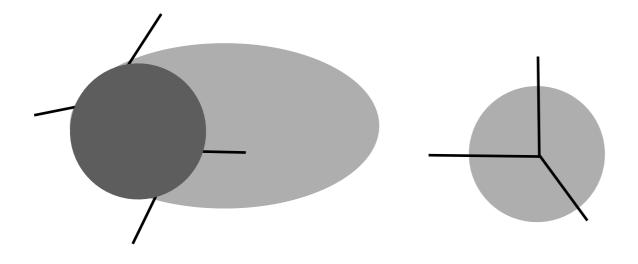
(1) Put a planar "star" in the black box



Merge by joining two leaves, then collapsing the resulting edge.

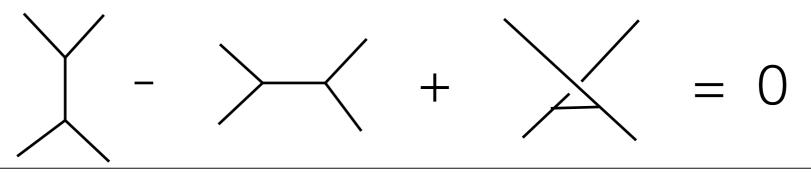
EXAMPLES:

(2) Put a planar trivalent graph in the black box



Merge by joining two leaves.

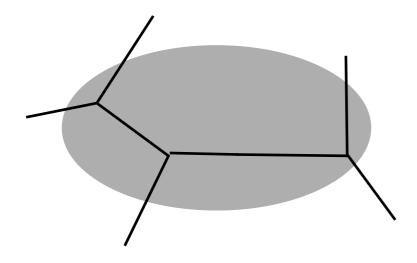
There are relations among the generators: IHX



Tuesday, June 28, 2011

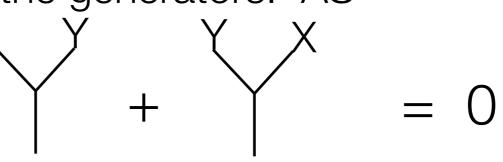
EXAMPLES:

(2) Put a planar trivalent graph in the black box



Merge by joining two leaves.

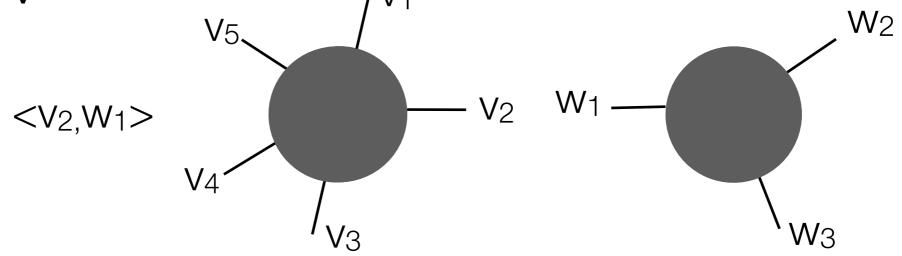
There are relations among the generators: AS



Lie algebra associated to ${\mathcal O}$

Generators: *O*-spiders **Bracket**: Sum of all possible fusions

An O-spider is an operad generator with i/o slots labelled by vectors in V V_1

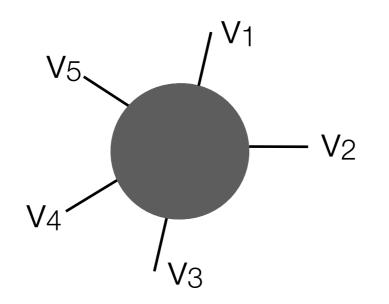


O-spiders are fused by merging them using an i/o slot from each and multiplying by the symplectic product of their labels.

Symplectic action and Kontsevich's theorem

The symplectic group Sp=Sp(V) acts on ℓ_{V} .

Theorem [Kontsevich] For $\mathcal{O} = \text{Lie}$, $PH_k(\ell_{\infty})^{Sp} \cong \bigoplus_{r \ge 2} H^{2r-2-k}(Out(F_r))$



Chain complex for $H_*(\ell_V)$

To compute the homology of ℓ_{V} use the exterior algebra with the Chevalley-Eilenberg differential:

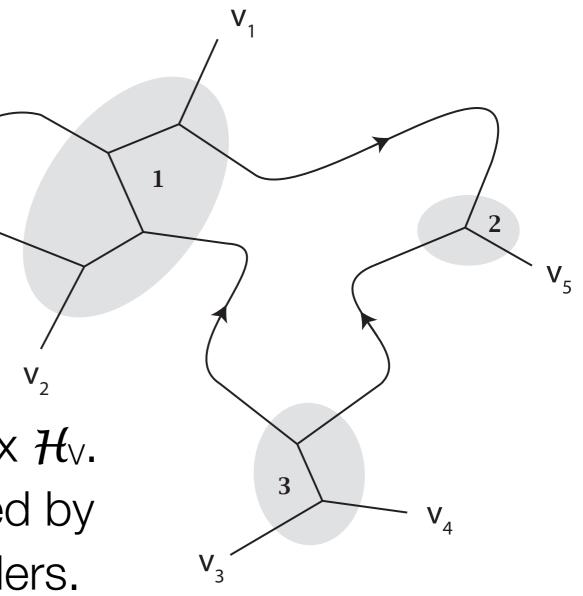
$$\dots \to \wedge^k \ell_V \to \wedge^{k-1} \ell_V \to \dots$$
$$\wedge \dots \wedge x_k)$$

$$\partial(x_1 \wedge \ldots \wedge x_k) = \sum_{i < j} (-1)^{i+j-1} [x_i, x_j] \wedge x_1 \wedge \ldots \wedge \hat{x}_i \wedge \ldots \wedge \hat{x}_j \wedge \ldots \wedge x_n$$

Hairy graphs and the trace map

A *hairy graph* is formed from an ordered list of spiders by erasing pairs of labels and joining the unlabeled legs by oriented edges:

These generate a chain complex \mathcal{H}_{\vee} . The k-chains $C_k \mathcal{H}_{\vee}$ are generated by hairy graphs formed from k spiders. The boundary map $\partial_{\mathcal{H}}$ merges two spiders along an oriented edge in all possible ways.



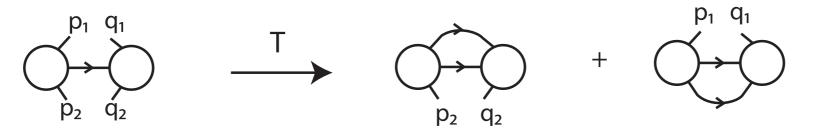
Tuesday, June 28, 2011

Hairy graphs and the trace map

i: $\wedge \ell_{\vee} \rightarrow \mathcal{H}_{\vee}$ erases the wedge signs. This is not a chain map.

 $T: \mathcal{H}_{\vee} \to \mathcal{H}_{\vee}$ erases two labels, joins the unlabeled legs

with an oriented edge, and multiplies by the symplectic product of the erased labels.



Proposition. The composition $Tr = e^T \circ i : \land \ell_V \rightarrow \mathcal{H}_V$ is a chain map.

Theorem. Tr_{*}: $H_i(\ell_V) \rightarrow H_i(\mathcal{H}_V)$ is injective.

Hairy graphs and the trace map

Theorem. Tr_{*}: $H_i(\ell_V) \rightarrow H_i(\mathcal{H}_V)$ is injective.

Theorem. $(p \circ Tr)_*$: $H_i(\ell_V) \rightarrow H_i(\mathcal{H}_{V^+})$ is surjective.

These theorems give upper and lower bounds on the size of $H_i(\ell_V)$ in terms of hairy graph homology.

Now: compute some hairy graph homology.

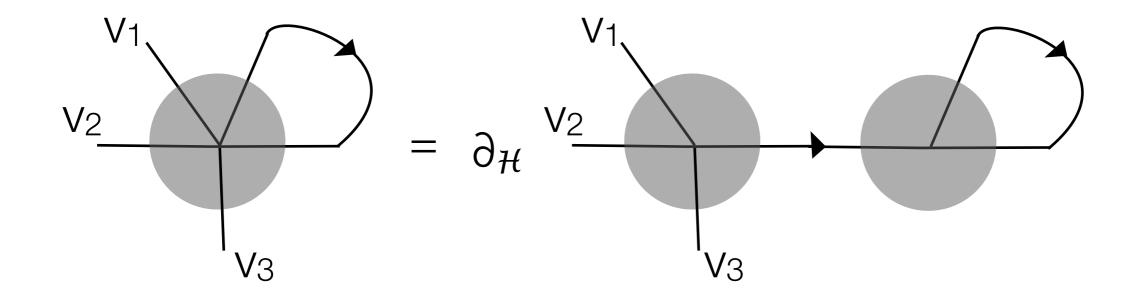
$$H_1(\boldsymbol{\ell}_{\infty})$$
 for $\mathcal{O} = Assoc$

Now: compute some hairy graph homology.

$$.. \rightarrow C_3 \mathcal{H} \rightarrow C_2 \mathcal{H} \rightarrow C_1 \mathcal{H} \rightarrow O$$

$$H_1(\mathcal{H}) = C_1 \mathcal{H} / \partial_{\mathcal{H}} (C_2 \mathcal{H})$$

Relations:



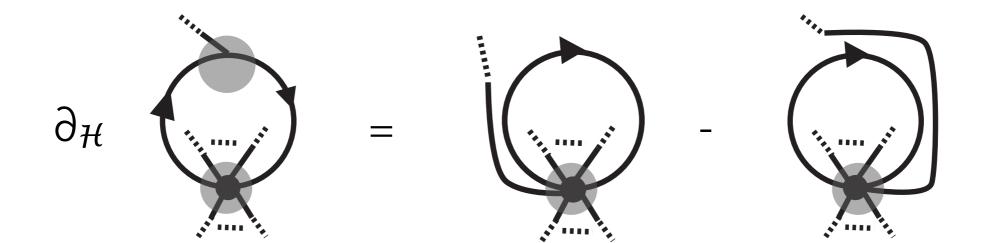
$$H_1(\boldsymbol{\ell}_{\infty})$$
 for $\mathcal{O} = Assoc$

Now: compute some hairy graph homology.

$$.. \rightarrow C_3 \mathcal{H} \rightarrow C_2 \mathcal{H} \rightarrow C_1 \mathcal{H} \rightarrow O$$

$$H_1(\mathcal{H}) = C_1 \mathcal{H} / \partial_{\mathcal{H}} (C_2 \mathcal{H})$$

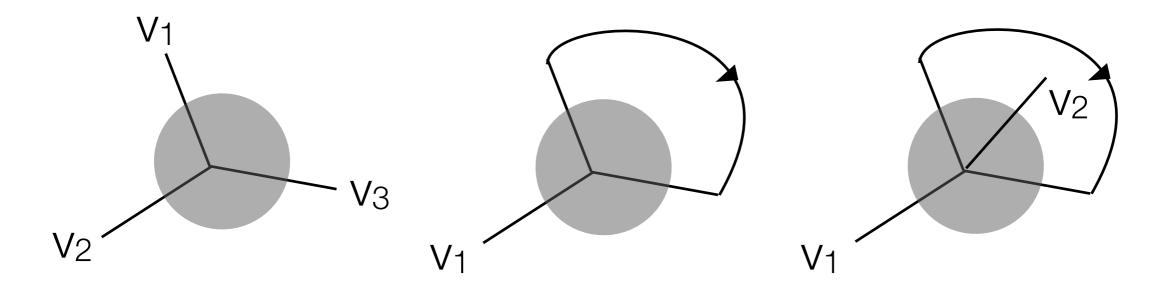
Relations:



$H_1(\mathcal{H}) = C_1 \mathcal{H} / \partial_{\mathcal{H}} (C_2 \mathcal{H})$

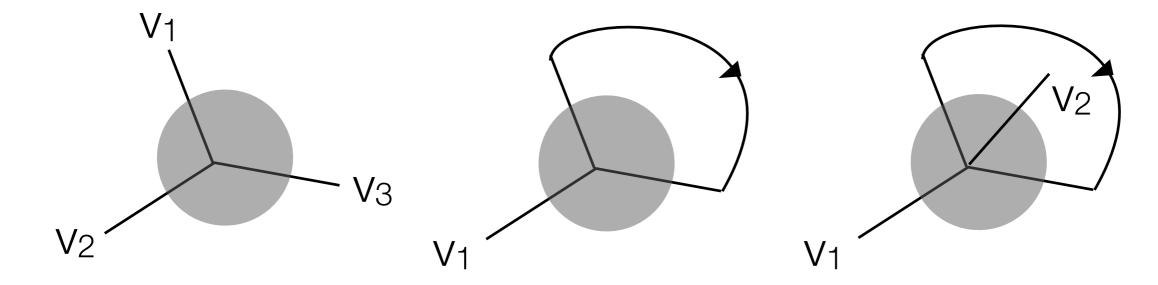
Using "slide moves" and the boundary observation, can show:

Theorem: The only non-trivial generators of $H_1(\mathcal{H})$ are



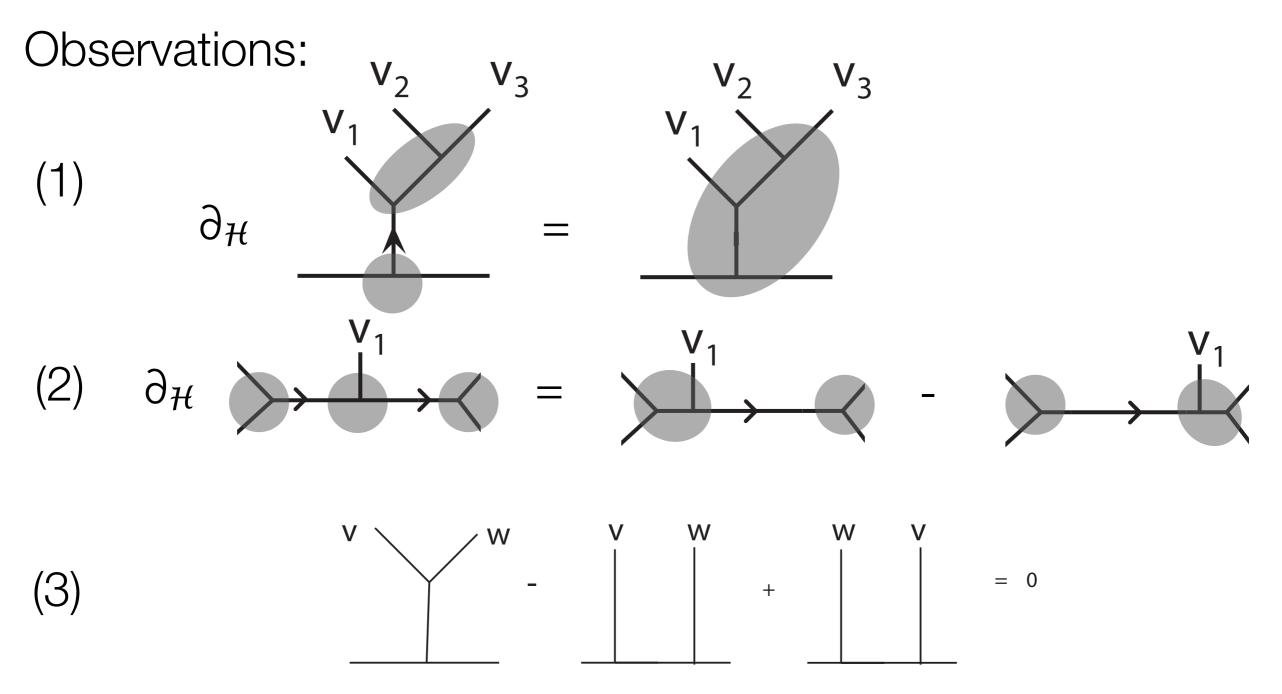
$H_1(\boldsymbol{\ell}_{\infty})$ for $\mathcal{O} = Assoc$

Theorem: The only non-trivial generators of $H_1(\mathcal{H})$ are



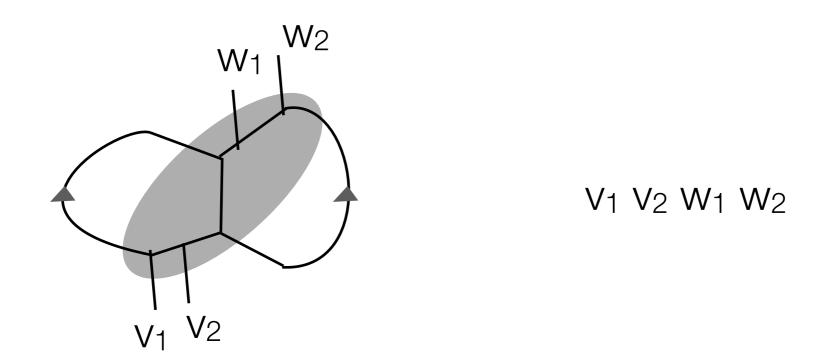
As GL(V) modules $H_1(\mathcal{H}) \cong [V^{\otimes 3}]_{\mathbb{Z}_3} \oplus V \oplus \wedge^2 V$ We can now compute the image of Tr in H₁(\mathcal{H}) to conclude **Corollary:** $H_1(\ell_{\infty}) \cong [V^{\otimes 3}]_{\mathbb{Z}_3} \oplus (\wedge^2 V)/\langle \omega_0 \rangle$ where $\omega_0 = \sum p_i \wedge q_i$

Again $H_1(\mathcal{H}) = C_1 \mathcal{H} / \partial_{\mathcal{H}} (C_2 \mathcal{H})$

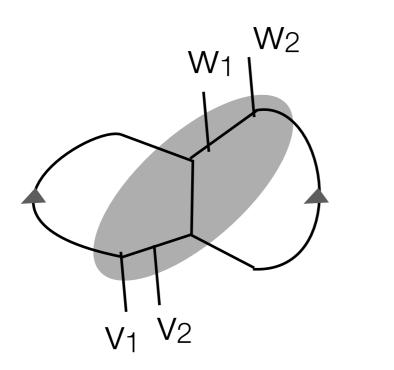


Again $H_1(\mathcal{H}) = C_1 \mathcal{H} / \partial_{\mathcal{H}} (C_2 \mathcal{H})$

These imply $H_1(\mathcal{H})$ is generated by trivalent graphs with hairs on the oriented edges.



Modulo $\partial_{\mathcal{H}}$ the order of the hairs does not matter, so each oriented edge gives a monomial in $\mathbb{C}[V]$



V1 V2 W1 W2

The graphs of rank r form a subcomplex of \mathcal{H} so $H_k(\mathcal{H}) = \bigoplus_r H_{k,r}(\mathcal{H})$

```
Theorem. H_{1,0}(\mathcal{H}) \cong \wedge^3 V
H_{1,1}(\mathcal{H}) \cong \bigoplus_k S^{2k+1} V
For r>1, H_{1,r}(\mathcal{H}) \cong H^{2r-3}(Out(F_r); \mathbb{C}[V^r])
```

Theorem. $H_{1,0}(\mathcal{H}) \cong \wedge^3 V$ $H_{1,1}(\mathcal{H}) \cong \bigoplus_k S^{2k+1} V$ For r>1, $H_{1,r}(\mathcal{H}) \cong H^{2r-3}(Out(F_r); \mathbb{C}[V^r])$

In particular, $H_{1,2}(\mathcal{H}) \cong H^1(Out(F_2); \mathbb{C}[V^2])$

•
$$Out(F_2) \cong GL(2,\mathbb{Z})$$

• 1 \rightarrow SL(2, \mathbb{Z}) \rightarrow GL(2, \mathbb{Z}) \rightarrow $\mathbb{Z}/2\mathbb{Z}$ \rightarrow 1

• $H^1(SL(2,\mathbb{Z}); \mathbb{C}[x,y])$ is computed in terms of modular forms by the Eichler-Shimura isomorphism.

Using these facts, we compute $H^1(Out(F_2); \mathbb{C}[V^2])$

Theorem. $H_{1,2}(\mathcal{H}) \cong H^1(Out(F_2); \mathbb{C}[V^2]) \cong \bigoplus_{k>l \ge 0} S_{(k,l)}V^{\oplus \lambda(k,l)}$

where

 $S_{(k,l)}V$ is the irreducible GL(V) representatin associated to the partition (k,l)

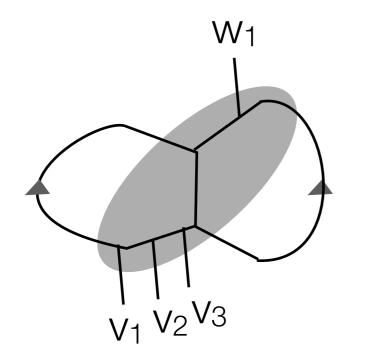
 λ (k,l) is

the dimension of the space of weight k-l+2 modular forms if I is even

1+ the dimension of the space of weight k-l+2 modular forms if I is odd

Theorem. $H_{1,2}(\mathcal{H}) \cong H^1(Out(F_2); \mathbb{C}[V^2]) \cong \bigoplus_{k>l \ge 0} S_{(k,l)}V^{\oplus \lambda(k,l)}$

Example: A non-trivial element of $H_{1,2}(\mathcal{H})$:



with all symplectic products trivial

This is in the image of Tr, so represents a non-trivial element of $H_1(\,\ell_{\infty}\,)$

Constructing cohomology for Out(F_n)

We use elements of $H_k(\boldsymbol{\ell}_{\infty})$ to construct cohomology classes for

Out(Fn), i.e. classes in PH*($\boldsymbol{\ell}$ $_{\infty}$)^{Sp}

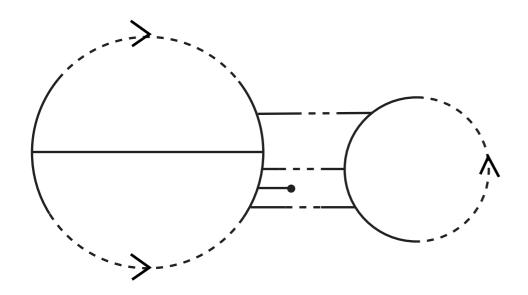
Easiest to explain: abelianization $\ell \to H_1(\ell \to)$ induces a backwards map on Lie algebra cohomology

 $\mathfrak{g}
ightarrow \mathfrak{a}$

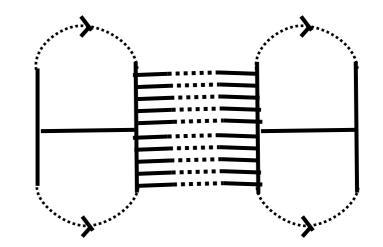
$$H^*(\mathfrak{a}) \to H^*(\mathfrak{g})$$
$$\Lambda^*(\mathfrak{a}) \to H^*(\mathfrak{g})$$
$$\Lambda^*(\mathfrak{a})^{\mathfrak{sp}} \to H^*(\mathfrak{g})^{\mathfrak{sp}}$$

Constructing cohomology for Out(F_n)

We can use elements of $H_k(\ell_{\infty})$ to construct cohomology classes for $Out(F_n)$, i.e. classes in $PH^*(\ell_{\infty})^{Sp}$



 $H_7(Aut(F_5); \mathbb{Q})$ $H_{11}(Aut(F_7); \mathbb{Q})$



 $H_{22}(Out(F_{13}); \mathbb{Q})$

Tuesday, June 28, 2011