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Cyclic operads, Lie algebras and homology
Give me your favorite cyclic operad and I will make a Lie algebra, 
à la Kontsevich.

For at least some cyclic operads O, the homology of this Lie 
algebra is interesting for topologists/geometric group theorists

For O = Assoc,  it computes the cohomology of punctured 
mapping class groups [Kontsevich].

For O = Lie,  it computes the cohomology of Out(Fn) [Kontsevich].

This talk is about a new way to construct cycles for the homology 
of these Lie algebras, using hairy graphs.

As an application, we find new cohomology classes for Out(Fn)
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Outline of talk

(1) Cyclic operads

(2) The associated Lie algebra ℓ∞ 

(3) Symplectic invariants and Kontsevich’s theorem

(4) The hairy graph complex and embedding H∗(ℓ∞) ↪ H∗(H)

(5) Compute H1(ℓ∞) for O = Assoc

(6) Compute H1(ℓ∞) for O = Lie 

(7) Note the connection with modular forms.

(8) New cohomology classes for Out(Fn)
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Cyclic operads

Generated as a vector space by black boxes with numbered i/o 
slots:

There is an operation merging boxes using an i/o slot from each

This operation obeys a very long list of natural rules including 
associativity, the existence of an identity and rules governing 
the interaction with the symmetric group action on i/o slot 
numbers.
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Cyclic operads

(1)  Put a planar “star” in the black box

 Merge by joining two leaves, then collapsing the resulting edge. 

EXAMPLES:
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Cyclic operads

There are relations among the generators:  IHX

EXAMPLES:

(2)  Put a planar trivalent graph in the black box

Merge by joining two leaves. 

+ =  0
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Cyclic operads

There are relations among the generators:  AS

EXAMPLES:

(2)  Put a planar trivalent graph in the black box

Merge by joining two leaves. 

+ =  0
X XY Y
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An O-spider is an operad generator with  i/o slots labelled by 
vectors in V

Lie algebra associated to O

Given a cyclic operad O  and a symplectic vector space V
Form a Lie algebra ℓV

Generators:   O-spiders 
Bracket:  Sum of all possible fusions

v2

v1
v5

v4

v3

O-spiders are fused by merging them using an i/o slot from each 
and multiplying by the symplectic product of their labels.

w2

w1

w3

<v2,w1>
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Symplectic action and Kontsevich’s theorem

Theorem [Kontsevich]  For O = Lie, 

                 PHk(ℓ∞)Sp ≅ ⊕r≥2 H2r-2-k(Out(Fr))

The symplectic group Sp=Sp(V) acts on ℓV. 

v2

v1
v5

v4

v3
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. . .→ ∧k�V → ∧k−1�V → . . .

Chain complex for H∗(ℓV)

=
∑

i<j

(−1)i+j−1[xi, xj ] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xn

∂(x1 ∧ . . . ∧ xk)

To compute the homology of ℓV  use the exterior algebra with 

the Chevalley-Eilenberg differential:
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Hairy graphs and the trace map

A hairy graph is formed from 
an ordered list of spiders by 
erasing pairs of labels and 
joining the unlabeled legs by 
oriented edges:  

v
1

v
5

v
4

v
3

v
2

1

2

3

These generate a chain complex HV.  
The k-chains CkHV  are generated by 
hairy graphs formed from k spiders.
The boundary map ∂H merges two 
spiders along an oriented edge in all 
possible ways.
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Hairy graphs and the trace map

i : ⋀ℓV  →  HV    erases the wedge signs.  
This is not a chain map.
 

T : HV → HV   erases two labels, joins the unlabeled legs 

with an oriented edge, and multiplies by the symplectic 
product of the erased labels.

Proposition.  The composition Tr = eT◦ i : ⋀ℓV → HV is 
a chain map. 

Theorem.  Tr∗: Hi(ℓV ) → Hi(HV) is injective. 

p1 q1

p2 q2

p1 q1

p2 q2

+
T
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Hairy graphs and the trace map

Theorem.  Tr∗: Hi(ℓV ) → Hi(HV) is injective. 

Theorem.  (p◦Tr)∗: Hi(ℓV ) → Hi(HV+) is surjective. 

These theorems give upper and lower bounds on the size 
of Hi(ℓV ) in terms of hairy graph homology.

Now:  compute some hairy graph homology.
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H1(ℓ∞) for O = Assoc

H1(H) = C1H /∂H (C2H) 

... → C3H → C2H → C1H → 0 

v1

v2

v3

= ∂H
v2

v3

v1

Now:  compute some hairy graph homology.

Relations:
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H1(ℓ∞) for O = Assoc

H1(H) = C1H /∂H (C2H) 

... → C3H → C2H → C1H → 0 

Now:  compute some hairy graph homology.

Relations:

∂H = -
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H1(ℓ∞) for O = Assoc

H1(H) = C1H /∂H (C2H) 

Theorem:  The only non-trivial generators of H1(H) are 

v1

v1

v2

v3

v1 v1

v2

Using “slide moves” and the boundary observation, can 
show:
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v1

v2

v3

v1 v1

v2

H1(ℓ∞) for O = Assoc

Theorem:  The only non-trivial generators of H1(H) are 

v1

As GL(V) modules

Corollary:  

We can now compute the image of Tr in H1(H) to conclude  

H1(�∞) ∼= [V ⊗3]Z3 ⊕ (∧2
V )/�ω0� where ω0 =

�

i

pi ∧ qi

H1(H) ∼= [V ⊗3]Z3 ⊕ V ⊕ ∧
2
V
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H1(ℓ∞) for O = Lie

Again H1(H) = C1H /∂H (C2H) 

=
v1 v1v1

∂H -

- +
=    0

v w wv vw

Observations:

(1)

(3)

(2)

v1

v2 v3

∂H

v1

v2 v3

=

Tuesday, June 28, 2011



H1(ℓ∞) for O = Lie

Again H1(H) = C1H /∂H (C2H) 

These imply H1(H) is generated by trivalent graphs with 
hairs on the oriented edges.

v2v2

w1
w2

v1 v2

Modulo ∂H  the order of the hairs does not matter, so 
each oriented edge gives a monomial in  ℂ[V]

v1 v2 w1 w2
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H1(ℓ∞) for O = Lie

v2v2

v1 v2 w1 w2

The graphs of rank r form a subcomplex of  H  so 

 Hk(H) = ⊕r  Hk,r(H)   

Theorem. H1,0(H) ≅ ⋀3 V

                   H1,1(H) ≅⊕k S2k+1 V
      For r>1, H1,r(H) ≅ H2r-3(Out(Fr); ℂ[Vr]) 
   

w1
w2

v1 v2
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H1(ℓ∞) for O = Lie

In particular, H1,2(H) ≅ H1(Out(F2); ℂ[V2])

•Out(F2) ≅ GL(2,ℤ)

• 1→ SL(2,ℤ)→ GL(2,ℤ)→ ℤ/2ℤ → 1

• H1(SL(2,ℤ); ℂ[x,y]) is computed in terms of modular forms by the 
Eichler-Shimura isomorphism.

Theorem. H1,0(H) ≅ ⋀3 V

                   H1,1(H) ≅⊕k S2k+1 V
      For r>1, H1,r(H) ≅ H2r-3(Out(Fr); ℂ[Vr]) 
   

Using these facts, we compute H1(Out(F2); ℂ[V2])
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Theorem.  H1,2(H) ≅ H1(Out(F2); ℂ[V2]) ≅ ⊕k>l≥0 S(k,l)V⊕λ(k,l)  

where
S(k,l)V   is the irreducible GL(V) representatin associated 
to the partition (k,l)
 λ(k,l) is 
        the dimension of the space of weight k-l+2 
modular forms if l is even 
        1+ the dimension of the space of weight k-l+2 
modular forms if l is odd 

H1(ℓ∞) for O = Lie
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Theorem.  H1,2(H) ≅ H1(Out(F2); ℂ[V2]) ≅ ⊕k>l≥0 S(k,l)V⊕λ(k,l)  

H1(ℓ∞) for O = Lie

v3

w1

v1 v2

Example:  A non-trivial element of H1,2(H):

with all symplectic products trivial

This is in the image of Tr, so represents a non-trivial element of 
H1(ℓ∞ )
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Constructing cohomology for Out(Fn) 

We use elements of Hk(ℓ∞) to construct cohomology classes for 

Out(Fn), i.e. classes in PH*(ℓ∞ )Sp

Utility of the abelianization

g→ a

H
∗(a)→ H

∗(g)

Λ∗(a)→ H
∗(g)

In some cases, the kernel is not too large.

Λ∗(a)sp → H
∗(g)sp

Easiest to explain:  abelianization ℓ∞ → H1(ℓ∞) induces a backwards 

map on Lie algebra cohomology
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Constructing cohomology for Out(Fn) 

We can use elements of Hk(ℓ∞) to construct cohomology classes for 

Out(Fn), i.e. classes in PH*(ℓ∞ )Sp

H7(Aut(F5);Q)

(CKV, Gerlits)

H11(Aut(F7);Q)
H22(Out(F13);Q)

nonzero??
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