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Before stating the theorem that produced our title:

Z ] p-acyclic resolutions in the “strongly countable”
7./ p-dimensional case

we will need to define what is:
@ a resolution
o dim and dimg (dimz,,)
@ a cell-like map
@ a G-acyclic map (Z/p-acyclic map)
@ strong countability — we are not using this notion in its
original form— these words refer to the infinite sequence of

closed spaces X1 C Xo C ... with finite dimZ/P in the
statement of our theorem



Definitions
A resolution

A resolution refers to a map (a continuous function) between
topological spaces, say, 7 : Z — X, where the domain is in some
way better than the range, and the fibers (point preimages) meet
certain requirements.
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Definitions
A resolution

A resolution refers to a map (a continuous function) between
topological spaces, say, 7 : Z — X, where the domain is in some
way better than the range, and the fibers (point preimages) meet
certain requirements.

™

7 —X We say: Z resolves X.

The resolution we obtain will be between a domain Z of finite dim,
and a range X of finite dimg, with cell-like or G-acyclic fibers.

Both domain and range will be compact metrizable spaces.
All groups we refer to will be abelian.



Characterization of dim and dim¢ by extension of maps

Absolute extensors

First we will introduce notation for absolute extensors:

Definition

A topological space Y is an absolute extensor for a topological
space X if for any closed subset A of X and any map f : A — Y,
there is a continuous extension F : X — Y.
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Absolute extensors

First we will introduce notation for absolute extensors:

Definition

A topological space Y is an absolute extensor for a topological
space X if for any closed subset A of X and any map f : A — Y,
there is a continuous extension F : X — Y.
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Characterization of dim and dim¢ by extension of maps

Absolute extensors

First we will introduce notation for absolute extensors:

Definition

A topological space Y is an absolute extensor for a topological
space X if for any closed subset A of X and any map f : A — Y,
there is a continuous extension F : X — Y.

Standard notation: Y € AE(X).
Also used: e-dm X <'Y.
We will use: X 7 Y.
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For any nonempty paracompact Hausdorff space X and n € Z>,
e dmX <n & X757,
e for any abelian group G, dimg X < n < X 7 K(G,n).
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Characterization of dim and dim¢ by extension of maps

For any nonempty paracompact Hausdorff space X and n € Z>,
e dmX <n & X757,
e for any abelian group G, dimg X < n < X 7 K(G,n).

K(G,n) = an Eilenberg-MacLane complex of type (G, n)
= a connected CW-complex having the property

ﬂ,-(K(G,n))%{ (é :?:;Z

o for a compact metrizable space X,
dimg X < dimz X <dim X

@ if X is a compact metrizable space with dim X < oo, then
dimz X = dim X (Thm by Aleksandrov)

@ there are compact metrizable spaces with infinite dim and
finite dimy (Eg by Dranishnikov, Dydak-Walsh)
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Cell-like and G-acyclic maps

Definition

A map 7 : Z — X between compact spaces is called cell-like if
each of its fibers 771(x) is a cell-like set, i.e., for any CW-complex
K and any x € X, every map f : 7~ 1(x) — K is nullhomotopic.
Or, equivalently, every fiber 771(x) has the shape of a point.
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Definitions
Cell-like and G-acyclic maps

A map 7 : Z — X between compact spaces is called cell-like if
each of its fibers 771(x) is a cell-like set, i.e., for any CW-complex
K and any x € X, every map f : 7~ 1(x) — K is nullhomotopic.
Or, equivalently, every fiber 771(x) has the shape of a point.

A map 7w : Z — X between topological spaces is called G-acyclic if
for any n € N and any x € X, every map f : 7~ 1(x) — K(G,n) is
nullhomotopic.

Clearly, 7 : Z — X is cell-like = 7 is G-acyclic.
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Theorem (R. Edwards - J. Walsh, 1981)

For every compact metrizable space X with dimyz X < n, there
exists a compact metrizable space Z and a surjective map
7w Z — X such that « is cell-like, and dim Z < n.
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exists a compact metrizable space Z and a surjective map
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Theorem (A. Dranishnikov, 1988)

For every compact metrizable space X with dimz,, X < n, there
exists a compact metrizable space Z and a surjective map
7 : Z — X such that 7 is 7/ p-acyclic, and dim Z < n.
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Theorem (M. Levin, 2005)

Let n € N>o. Then for every compact metrizable space X with
dimg X < n, there exists a compact metrizable space Z and a
surjective map w : Z — X such that 7w is Q-acyclic, and dim Z < n.
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Resolution Theorems
Levin Resolution Theorem for Q

Theorem (M. Levin, 2005)

Let n € N>o. Then for every compact metrizable space X with
dimg X < n, there exists a compact metrizable space Z and a
surjective map w : Z — X such that 7w is Q-acyclic, and dim Z < n.

Z dimZ <n dmZ <n dmZ <n
Wl lcelllike i.’/A/szcycli(: l@—zicyclic
X dimz X < n dimz,, X <n dimgX <n

This does not work for any abelian group G:
if G=2/p>® ={2€Q/Z : n=p* for some k > 0}
(quasi-cyclic p-group), then dimZ £ n, but dimZ < n+ 1.



Resolution Theorems

Levin Resolution Theorem for any G

Theorem (M. Levin, 2003)

Let G be an abelian group, n < N->. Then for every compact
metrizable space X with dimg X < n, there exists a compact
metrizable space Z and a surjective map m : Z — X such that:
(a) w is G-acyclic,

(b) dmZ < n+1, and

(c) dimg Z < n.




Resolution Theorems

Levin Resolution Theorem for any G

Theorem (M. Levin, 2003)

Let G be an abelian group, n < N->. Then for every compact
metrizable space X with dimg X < n, there exists a compact
metrizable space Z and a surjective map m : Z — X such that:
(a) w is G-acyclic,

(b) dmZ < n+1, and

(c) dimg Z < n.
V4 dmZ <n dmZ <n+1,dmgZ <n
ﬂl i@—aeyclic \LG acyclic
X dimg X <n dimg X <n
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Possible generalization

Ageev-Jiménez-Rubin Theorem for Z

Xl( XQC .. C XkC ¢ > X

dimg, X; <1 dimy, Xp <2 dimy, X <k

Theorem (S. Ageev, R. Jiménez and L. Rubin, 2004)

Let X be a nonempty compact metrizable space and let

X1 C Xo C ... be a sequence of nonempty closed subspaces such
that Vk € N, dimyz X, < k < co. Then there exists a compact
metrizable space Z, having closed subspaces Z1 C Z, C ..., and a
(surjective) cell-like map m: Z — X, s.t. Vk € N,

(a) dim Zk < k,

(b) 7T(Zk) = Xk, and

(c) mlz, : Zk — Xk is a cell-like map.
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Theorem (S. Ageev, R. Jiménez and L. Rubin, 2004)

Let X be a nonempty compact metrizable space and let

X1 C Xo C ... be a sequence of nonempty closed subspaces such
that Vk € N, dimyz X, < k < co. Then there exists a compact
metrizable space Z, having closed subspaces Z1 C Z, C ..., and a
(surjective) cell-like map m: Z — X, s.t. Vk € N,

(a) dim Zk < k,

(b) 7T(Zk) = Xk, and

(c) mlz, : Zk — Xk is a cell-like map.




Possible generalization
Rubin-T. Theorem for Z/p

Xl( XQC . C XkC ¢ > X

dimg/, X1 <01 dimg, , Xp <t5 dimg /p X <4

Theorem (L. Rubin and V. T., 2010)

Let X be a nonempty compact metrizable space, let {1 < {r < ...
be a sequence of natural numbers, and let Xy C X, C ... be a
sequence of nonempty closed subspaces of X such that Vk € N,
dimz,/, Xk < £k < oo. Then there exists a compact metrizable
space Z, having closed subspaces Z1 C Z, C ..., and a
(surjective) cell-like map w: Z — X, such that for each k in N,

(a) dim Zk < fk,
(b) 7T(Zk) = Xk, and
(c) 7|z, : Zk — Xx is a Z/p-acyclic map.

V. Toni¢




Possible generalization
Rubin-T. Theorem for Z/p
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ZlC Zz( ... C Zk( ( > 7
T|2/p—acyclic T12/p—acyclic 7| 7/p—acyclic ™ ml\]y“k“
XlC X2( ... C XkC ( > X
dimg, , X <01 dimg, /X2 < dimg, 1 X <L

Theorem (L. Rubin and V. T., 2010)
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dimz,/, Xk < £k < oo. Then there exists a compact metrizable
space Z, having closed subspaces Z1 C Z, C ..., and a
(surjective) cell-like map w: Z — X, such that for each k in N,

(a) dim Zk < fk,
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V. Toni¢
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Possible generalization

Conjecture for any abelian group G

dim 73 <¢1+1 dim Zy<fp+1 dim Z, <) +1
dimg 2 <6y dimg Zo<to dimg Z, <0y
ZlC 22( .o C ZkC C > 7
\ \ \
W'Gfacyclic 7Tlearyclic 77‘ G—acyclic ™ ‘TPIJI/*W“"
X XoC Lo C X C . x
dimg X1 <¢; dimg Xp<fp dimg Xj <)
where {1 </l <--- </, < ... is a sequence of numbers in N>».
This would be a generalization of Levin's theorem for any abelian
group G.
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General idea for proving resolution theorems:
Let X be a compact metrizable space with the required property
(eg. dimg X < n).

Theorem (H. Freudenthal, 1937)

Every compact metrizable space can be represented as the inverse
limit of an inverse sequence of compact polyhedra, with surjective
and simplicial bonding maps.

Pit1 X

i+1
f;

Py P, < P

(1) Choose an inverse sequence (P;, ﬁi+1) of compact polyhedra,

with simplicial, surjective bonding maps, whose limit is X.
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P1 P, P; Pij1<— - X

fl2 f23 f'i—l fii+1

(2) Use this sequence as a foundation to build another inverse
sequence (M;, git1)

1



Techniques used in proofs of resolution theorems

gt & g gt
My<—— My <—— - <— M Mipg <— - 4
¢1l i(ﬁz ¢il id)iﬁ»l 7T
Y
& 2 P2 f3 o fl P Fi+1 Pit1 o X

(2) Use this sequence as a foundation to build another inverse
sequence (M;, g/t1) and an almost commutative ladder of

maps, so that Iim(M;,gi"H) =Zandthemapnm:Z — X
with desired properties can be produced.
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My

g

P P e Py
1 f12 2 f23 f,l,l i f,-'+1

Piy1<— - X

The bottom inverse sequence is pre-chosen, while the top inverse
sequence and the ladder of maps are built gradually.
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g}
My <— M,

N

Pi<—— P> Pi

fi £ iy

fitl Pit1 <—-+ X

The bottom inverse sequence is pre-chosen, while the top inverse
sequence and the ladder of maps are built gradually.
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2 3 i
M]_ 81 M2 8> . 8i_1 M,’
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i+1
fi

fi 5 iy

The bottom inverse sequence is pre-chosen, while the top inverse
sequence and the ladder of maps are built gradually.
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sequence and the ladder of maps are built gradually.
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2 3 i i+1
& &i—1 i

M Ma a M; <— Miy1 <— -+ Z
¢1l l@ ¢il i(ﬁi-f—l ™
Y

& 2 P2 f3 o fl & Fitt Pit1 o X

The bottom inverse sequence is pre-chosen, while the top inverse
sequence and the ladder of maps are built gradually.
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About the proof of Rubin-T. Theorem

Part of the construction done in Hilbert cube /™ = Q = 1™ x Q,
o0

with metric p(x,y) = Z 1 2,.y". (Hilbert cube is universal for
i=1

metrizable compacta). Maps p,, : Q — [" are projections. We

choose compact polyhedra ...

P} cIm

Pnq Pnq

e

P}« ~P3 cIm

pl!z p”2/ pl?z
P} =P > P3 cIm

an/ pl73 p/13 pl‘!’g

/S



About the proof of Rubin-T. Theorem

. so that X =72, Pi x Qp;, and Xk = N2, PX x Q..

P x Qn,

/

Pl x Qn > P?x

P31><Q,,3 (—>P§><Q,,3 = P x

Qn,

Qny

PixQy “—=P2xQn “—=P}xQy “——PixQn

X1 :—> Xo - X3 C—> C—>X

V. Toni¢



About the proof of Rubin-T. Theorem

Instead of the bottom inverse sequence we now have:

Pl X Qn

/

P; X Qn, C—>P22>\<J

P} X Qu “—— P2 xQy, “—— P} x

Qn,

Qns

PixQy “—=P2xQn “—=P}xQ, “——PixQn

X C_> X5 (N X C_> C—>X

V. Toni¢
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About the proof of Rubin-T. Theorem

While choosing polyhedra, we simultaneously build simplicial maps

i+1 . pi+1 i
g P,-Jrl — Py
Pi
gl &
i
P ———F;
3/ 3/ 3
8| 8| &
/ /
Py © P; © P3
4/ 4/ 4/ 4
g3\ g3| g3| 83
/ / i
Pi © pP; © P C P:
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Our goal is: Z:= lim(P!, gi*?)

Pi
/ )
g1| &1
s
P ———F;
3/ 3/ 3
&l gl &
/ /
Py € P3 C P;
e 7 e
/gz‘ /g§| /éé‘l g
Pi € P P C P
z
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..and Z:= lim((P¥)(%), git1)

(P

g2\/ &

/ 1 1

(le) ) (p2)(/z)
v ey

e e “
(P31)(£1) [ (P32)(4’2) [GE (P33)<‘3’
_ 7 ey

/g3 | /3 | g3

/
(p})(h) (_>(p§)(/z) G (pf)(fs) (—>(p§)(54)

Z; Z> Z3 Zs



About the proof of Rubin-T. Theorem

To get the map 7 : Z — X, the following diagram should be very
close to commuting:



About the proof of Rubin-T. Theorem

To get the map 7 : Z — X, the following diagram should be very
close to commuting:

2 3 4
pr <2 P2 <2 P32 Z
,-di ,-dl ,-dl
pro—"  pp. P2 p3 P
] | |
P X Qp =—P3 X Qpy =—P3 X Qpy =+ X



About the proof of Rubin-T. Theorem

We choose both the polyhedra Pii and the maps gf“ ; P{Ill — P,f
as we go (the bottom sequence is not pre-chosen).

2 3 4
le_‘ 87 P22 85 PS 83 Z
idi idl idl
P]]-' Pny P22 Pny Pg’ Pns o ﬂ
[
Pl x Qn <——P3 X Quy <—P3 x Qpy <"+~ X
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Edwards-Walsh complexes

The hardest part of the construction is producing suitable
’+1 P,’Ill — Pi. We use factoring maps through certain
CW complexes — Edwards-Walsh complexes.

EW(L, G, n)

b

For G an abelian group, n € N and L a simplicial complex, an
Edwards-Walsh resolution of L in dimension n is a pair

(EW(L, G, n),w) consisting of a CW-complex EW(L, G, n) and a
combinatorial map w : EW(L, G, n) — |L]| (that is, for each
subcomplex L’ of L, w™1(|L']) is a subcomplex of EW(L, G, n))
such that:
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(i) wH(IL]) = [LIM] and w] | m) is the identity map of |L()]
onto itself,
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(ii) for every simplex o of L with dim o > n, the preimage w~ (o)
is an Eilenberg-MacLane complex of type (D G, n), where the
sum here is finite, and
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EW(L, G, n)

|

L]

(i) wH(IL]) = [LIM] and w] | m) is the identity map of |L()]
onto itself,

(ii) for every simplex o of L with dim o > n, the preimage w~ (o)
is an Eilenberg-MacLane complex of type (D G, n), where the
sum here is finite, and

(iii) for every subcomplex L' of L and every map
f:|l'| — K(G,n), the composition
fowly-1(rr)) : w H(|L']) = K(G, n) extends to a map
F:EW(L, G,n) — K(G,n).



About the proof of Rubin-T. Theorem
Edwards-Walsh complexes
EW(L, G, n) < w1(|L')

LT
w wlL

n oIL

(i) w (LM|) = [L()| and wl| (| is the identity map of L]
onto itself,

(ii) for every simplex o of L with dim o > n, the preimage w=1(o)
is an Eilenberg-MacLane complex of type (€D G, n), where the
sum here is finite, and

(iii) for every subcomplex L’ of L and every map
f:|L'| = K(G,n), the composition
f o wl,-1qup : w H(|L']) = K(G, n) extends to a map
F:EW(L, G,n) — K(G,n).
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Edwards-Walsh complexes

Not all of the abelian groups G admit an Edwards-Walsh resolution
(for any simplicial complex). But when G is Z or Z/p, Edwards-
Walsh resolutions exist for any simplicial complex L. In fact:

Lemma
For the groups Z and Z/p, for any n € N and for any simplicial
complex L, there is an Edwards—Walsh resolution
w: EW(L, G, n) — |L| with the additional property for n > 1:
Q the (n+ 1)-skeleton of EW(L,Z, n) is equal to L(");
@ the (n+ 1)-skeleton of EW(L,Z/p, n) is obtained from L(")
by attaching (n+ 1)-cells by a map of degree p to the
boundary do, for every (n+ 1)-dimensional simplex o.
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Edwards-Walsh complexes

Not all of the abelian groups G admit an Edwards-Walsh resolution
(for any simplicial complex). But when G is Z or Z/p, Edwards-
Walsh resolutions exist for any simplicial complex L. In fact:

Lemma
For the groups Z and Z/p, for any n € N and for any simplicial
complex L, there is an Edwards—Walsh resolution
w: EW(L, G, n) — |L| with the additional property for n > 1:
Q the (n+ 1)-skeleton of EW(L,Z, n) is equal to L(");
@ the (n+ 1)-skeleton of EW(L,Z/p, n) is obtained from L(")
by attaching (n+ 1)-cells by a map of degree p to the
boundary do, for every (n+ 1)-dimensional simplex o.

Describe how to build an EW(L,Z/p, n).



About the proof of Rubin-T. Theorem
Edwards-Walsh complexes

Edwards-Walsh complexes (resolutions) are useful because

Let X be a compact metrizable space with dimg X < n, and let L
be a finite simplicial complex. Then for every Edwards-Walsh

resolution w : EW(L, G, n) — |L|, and for every map f : X — |L

there exists an approximate lift f : X — EW(L, G, n) of f.

7

EW(L, G, n)

X/

—

dimg X<n < X7K(G,n)
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Edwards-Walsh complexes

Edwards-Walsh complexes (resolutions) are useful because

Let X be a compact metrizable space with dimg X < n, and let L
be a finite simplicial complex. Then for every Edwards-Walsh

resolution w : EW(L, G, n) — |L|, and for every map f : X — |L

there exists an approximate lift f : X — EW(L, G, n) of f.

7

EW(L, G, n) ~
r f is an approximate lift of £ w.r.
e i“’ towifVx € X, f(x) € A =
X/ ‘L| wof(X)EA.

f

dimg X<n < X7K(G,n)
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About the proof of Rubin-T. Theorem
Construction of polyhedra

Construction is inductive. Induction step: suppose we have built

P}
/
Il &
/
Py = F;
gii—ﬂ gii—ll T&q
'Dil C Pl2 C .. C P’I



About the proof of Rubin-T. Theorem
Construction of polyhedra

We would like to build:

gii—ﬂ gii—ll 8i—1
P C p? C C P
gt g g
/ S \
1 2 C i+1
Pi—l( Pi+1( o P;ﬂ
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To get Z/p-acyclicity of 7|z, : Zj — Xj:

Pk

1
gl 1|
i
Pk

i+1

within each of our diagonals, we need to have that, for infinitely
many indexes i, g,.’+1| factors up to homotopy through an
Edwards-Walsh complex:

V. Toni¢



About the proof of Rubin-T. Theorem
Construction of polyhedra

To get Z/p-acyclicity of 7|z, : Zj — Xj:

EW/(P¥.Z/p.tx)

within each of our diagonals, we need to have that, for infinitely
many indexes i, g,.’+1| factors up to homotopy through an
Edwards-Walsh complex: g,.i+1| ~wof.

V. Toni¢
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So we will have to choose a “book-keeping” function v : N — N to
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About the proof of Rubin-T. Theorem
Construction of polyhedra

To get Z/p-acyclicity of 7|z, : Zj — Xj:

EW(P¥.Z/p.t)

Pk

i+1

So we will have to choose a “book-keeping” function v : N — N to
tell us on which diagonal to focus next.
v(i) < i, v=1(k) is infinite.

V. Toni¢



About the proof of Rubin-T. Theorem

Let's suppose our “book-keeping” function told us to focus on

v(i)=k < i.
Pl
gfl/ Tgf
Ve
o
[71‘/ gii—l‘ Tg/1
p! c/i pk / C pi




About the proof of Rubin-T. Theorem

Let's suppose our “book-keeping” function told us to focus on
v(i) = k < i. This means: focus on k-th diagonal and build

EW(PK,Z/p,{y) above PX.

Pi




About the proof of Rubin-T. Theorem

Now there is an approximate lift f : X, — EW(P¥,Z/p, ) of
P | © Xk — PK (because dimy,, X < ().

Pi
gfl/ Té’f
v
A S
/

V. Toni¢



About the proof of Rubin-T. Theorem

We can extend f over a nbhd U of X in Hilbert cube @, then
make this nbhd smaller so that on U maps p,, and w o f are close.

X

V. Toni¢
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make this nbhd smaller so that on U maps p,, and w o f are close.

7

V. Toni¢



About the proof of Rubin-T. Theorem

Now you can pick nj;1, as well as the polyhedra

PO P D...D Pk D...D Py in I™ so that they
satisfy a number of technical properties, including
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Now you can pick nj;1, as well as the polyhedra

PO PLID...D P D ... D PLin [ so that they
satisfy a number of technical properties, including

Xk C Pf.y % Qp,, C U. So f is defined on PX; X Qn, ;.

EW (P!, Z/p, £x)

7

pkC pi

e

Pr; |

k C o i+1
Pi+1 - 'Df+1

i

Pfy % Qny =—Xi

V. Toni¢
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Let f be a cellular approximation of f o i. Because of our careful
choices, we can extend wof:Pk ,—Pk to a map ¢:P 1} —Pi, so that ¢
and pp,|pi+1 are very close.

i+1

o l‘”

PiC P

i : Pn; [
P /

PH—I

Pik+1 X Qi ~ X

V. Toni¢
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and pp,|pi+1 are very close.
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Pik+1 X Qniyy ~ X

V. Toni¢



About the proof of Rubin-T. Theorem

Let f be a cellular approximation of f o i. Because of our careful
choices, we can extend wof:Pk ,—Pk to a map ¢:P1{—Pi, so that ¢
and pp,|pi+1 are very close. Finally, replace ¢ by its simplicial

i+1

approximation g/ Pl —Pi.

k
> EW(PI 7Z/pa£k)

—

_ e
;o S e
Z IR
/ R kC i
4 foi .- Pi 7 Pi
/ ’ - A
/ v 7
B < N
p s el
v .
. i+
Pn,‘ / S &
i1
PH—I

Pik+1 X Qniyy ~ X

V. Toni¢



About the proof of Rubin-T. Theorem

Note that gii+1|P,k+1 : PK., — Pk factors through EW(PK,Z/p, (k)
up to closeness/homotopy, and gl.’+1 : P,.’_tll — P! is close to

. pitl j
Pm|P;j:11 P — Pr

~ R
;o R

PKC

Pik+1 X Qniyy X

V. Toni¢



About the proof of Rubin-T. Theorem

This is how we get P;f} C I"+ (together with Pl ;,..., PL ),
and the bonding map g/ ™" : P/} — PI.

2 i i+1
&1 8i—1 . &; .

1 .. i i+1
Py Pi 'D/'+1
Idl fdl ldl

Pny Pnj_y . Pn; X
1
P P

1 1

:D11 X in <—)<—)P:I X Q”i (—JP;All X Q"Hl



About the proof of Rubin-T. Theorem

This is how we get P;f} C I"+ (together with Pl ;,..., PL ),
and the bonding map g/ ™" : P/} — PI.

i i+1

2
&1 &i—1 . &; .
1 - i i+1 -
Pi Py Pf+1 Z
idl idl idl
Pny nj_1 i Pn; P,-/ {(11 . .

oo

P11 X Qn <—><—)P,' X Qn, <_)piff11 % Qmu - D...



About the proof of Rubin-T. Theorem

We can define w : Z — X and 7 is continuous: from closeness of
g™ : P[fl — Piand p, : PI]] — Pl

i+1 i+1 i
2 i i+1
543 8i—1 . &
1 i i+1 e
P P; Pits 4
idl idl idl
Pny Pnj_y . Pn; :
1 . i i+1 . :
P P; Piii i

]

Pl x Qn, <~ .. <—pix Qn; (_)pl 1% Qs - ...



About the proof of Rubin-T. Theorem

Cell-likeness of m: Vx € X, m1(x) is the inverse limit of an inverse
sequence (PX,,',g,-'H]) of contractible polyhedra.

2 i i+1
&1 &i—1 . & .
1 i i+1 .
P; e P; P 4
idl idl idl
Pny Pnj_y . Pn; . :
1 . i ! i+1 . :
'Dl = PH»l i

]

Pl x Qn - ... QP{ X Qn; <_)pii:11 X Qniy - ...



About the proof of Rubin-T. Theorem

Z/ p-acyclicity of 7|z, : Zx — Xk: within each diagonal, infinitely
many of g,-’+1| factor, up to homotopy, through an EW-complex.

1 .
P; Piig
&l g,-" F
i i+1
&1 8i—1 . &; .
1 i i+1
Pl Pi P/'+1 V4
Idl idl Idl
Pny Pnj_y . Pn; .
1 i ! i+1
P} P; :

Pl x Qun <— <P x Q <—P//| x Qy,, <—+-

i+1

V. Toni¢



The End

THE END



