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Example.

I The a.c. of Z2 is R2,

I the a.s. of a binary tree is an R-tree
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G = 〈a, b, c〉, x ∈ X , dφ = minx d(x).

d(x)

The word many means that the translation numbers dφ are
unbounded.
Then we can divide the metric in X by dφ, obtaining Xφ,
φ : Λ → G . The R-tree is the limit Con(X , (dφ), (xφ)).
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How about the ring of integers Z? If p(x1, ..., xn) is a polynomial
with integer coefficients. Every solution of p = 0 is a
homomorphism Z[x1, ..., xn)/(p) → Z. Is there an asymptotic
geometry behind the question of finiteness of the number of
solutions?
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Definition Let F be a complete geodesic metric space and let P
be a collection of closed geodesic subsets (called pieces). Suppose
that the following two properties are satisfied:

(T1) Every two different pieces have at most one common point.

(T2) Every simple geodesic triangle (a simple loop composed of
three geodesics) in F is contained in one piece.

Then we say that the space F is tree-graded with respect to P.
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The length of the blue arc should be > O(R).
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Cut points and tree-graded structures

Recall that hyperbolicity ≡superlinear divergence of any pair of
geodesic rays with common origin.
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The geodesics [x , y ] from transversal trees are called transversal

geodesics.
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l

j

A tree-graded space. Pieces are the circles and the points on the
line.
The line is a transversal tree, the other transversal trees are points
on the circles.
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Observation. (Druţu+S.) A bi-infinite geodesic in the Cayley
graph is Morse iff its limit in every asymptotic cone is a transversal
geodesic.



The description
Proposition. Let X be a homogeneous geodesic metric space.
Then one of the asymptotic cones of X has a cut point iff X has
superlinear divergence.

Morse geodesics: a geodesic g such that every path p with ends
on g of length at most Cdist(p

−
, p+) gets constant close to g.
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Obvious Lemma (Druţu, Mozes, S.) If H < G , g ∈ H is such
that {gn, n ∈ Z} is Morse in G (i.e. g is a Morse element). Then
g is Morse in H.



The description
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Morse geodesics: a geodesic g such that every path p with ends
on g of length at most Cdist(p

−
, p+) gets constant close to g.

Observation. (Druţu+S.) A bi-infinite geodesic in the Cayley
graph is Morse iff its limit in every asymptotic cone is a transversal
geodesic.
Example (Behrstock) Cyclic subgroups generated by
pseudo-Anosov elements in a MCG of a closed punctured surface.
Obvious Lemma (Druţu, Mozes, S.) If H < G , g ∈ H is such
that {gn, n ∈ Z} is Morse in G (i.e. g is a Morse element). Then
g is Morse in H.
Corollary. If H does not have cut-points in its asymptotic cones
(say, H is a lattice in SLn(R) by DMS or satisfies a law by DS)
then every injective image of H in a MCG does not contain
pseudo-Anosov elements and hence is reducible.
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in point b 6= a, then every path connecting u and v passes through
a and b. Thus for every pair of points u, v we can define d̃(a, b) as
dist(a, b) minus the sum of lengths of subgeodesics which are
inside pieces. We have that d̃ is a pseudo-distance. Let ∼ be the
equivalence relation a ∼ b iff d̃(a, b) = 0.
Theorem (D+S) X/ ∼ is an R-tree.
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Theorem Let G be a finitely generated group acting on a
tree-graded space (F,P). Suppose that the following hold:

(i) Every isometry g ∈ G permutes the pieces;

(ii) No piece or point in F is stabilized by the whole group G ;

Then one of the following situations occurs.

(I) The group G acts by isometries on the complete R-tree F/ ∼
non-trivially, with controlled stabilizers of non-trivial arcs, and
with controlled stabilizers of non-trivial tripods.

(II) The group acts on a simplicial trees with controlled stabilizers
of edges.
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I (Druţu, Mozes, S.) Any group acting on a simplicial tree

k-acylindrically.
I (Olshanskii, Osin, S.) There exists a torsion group with cut

points in every asymptotic cone (no bounded torsion groups
with this property exist).

I (O+O+S.) There exist a f.g. infinite group with all periodic
quasi-geodesics Morse and all proper subgroups cyclic.



Examples (with cut points)
I relatively hyperbolic groups and metrically relatively

hyperbolic spaces (Druţu, Osin, Sapir);
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I (Druţu, Mozes, S.) Any group acting on a simplicial tree

k-acylindrically.
I (Olshanskii, Osin, S.) There exists a torsion group with cut

points in every asymptotic cone (no bounded torsion groups
with this property exist).

I (O+O+S.) There exist a f.g. infinite group with all periodic
quasi-geodesics Morse and all proper subgroups cyclic.

I (O+O+S.) There exists a f.g. (amenable) group such that
one a.s. is a tree (it is lacunary hyperbolic).

Question. Is there a f.g. (f.p.) amenable group with cut points in
every a.c.?
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Asymptotic cones of a group are not unique (KSTT, DS, OS).
Let Q be a collection of geodesic metric spaces. We say that a
geodesic metric space F is a Q-tree if F is tree-graded with respect
to pieces isometric to elements of Q.
We say that a Q-tree is universal if for every point s ∈ F, the
cardinality of the set of connected components of F \ {s} of any
given type is continuum. This notion generalizes the notion of
universal R-trees studied by Mayer, Nikiel, and Oversteegen as well
as Erschler and Polterovich, where pieces are points and all
connected components of F \ {s} are of the same type. A discrete
version of Q-trees was also studied by Quenell.
Theorem (Osin+S). Let Q be a collection of homogeneous
complete geodesic metric spaces. Then the following hold.

1. There exists a universal Q-tree.

2. Every Q-tree of cardinality at most continuum embeds into a
universal Q-tree.

3. Every two universal Q-trees are isometric.



Relatively hyperbolic groups

Theorem. (Osin+S) Let G be a group generated by a finite set
X and hyperbolic relative to a collection of subgroups
{H1, . . . ,Hn}. Then for every non-principal ultrafilter ω and every
scaling sequence d = (di ), the asymptotic cone of G is bi-Lipschitz
equivalent to the universal Q-tree, where
Q = {Conω(Hi , d) | i = 1, . . . , n}.
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Other groups with tree-graded asymptotic cones.

Let G be the fundamental group of a hyperbolic knot complement.
Then it is hyperbolic relative to a free abelian subgroup of rank 2
and all asymptotic cones of G are bi-Lipschitz equivalent to the
universal {R2}-tree. The same holds, for asymptotic cones of
(Z× Z) ∗ Z.
Similarly, every non-uniform lattice in SO(n, 1) is relatively
hyperbolic with respect to finitely generated free Abelian
subgroups Zn−1, hence their asymptotic cones are all bi-Lipschitz
equivalent to the asymptotic cones of Zn−1 ∗Z and are bi-Lipschitz
equivalent to the universal {Rn−1}-tree.
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Theorem (Osin+ S)[Assuming CH is true] Let F be an
asymptotic cone of a geodesic metric space. Suppose that F is
homogeneous and has cut points. Then F is isometric to the
universal Q-tree, where Q consists of representatives of isometry
classes of maximal connected subspaces of F without cut points.
Thus, modulo CH, the asymptotic cones of the mapping class
groups are completely determined by their pieces, that is maximal
connected subsets without cut points. These have been described
in [Behrstock-Kleiner-Minsky-Mosher] and [Behrstock-Druţu-S].
But we do not know if the pieces depend on the sequence of
scaling constants or the ultrafilter.
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Application to MCG

Theorem. (BDS)1. The asymptotic cone is equivariantly
bi-Lipschitz inside a product of R-trees, the image is a median
space.
Theorem. [BDS] If a finitely presented group Γ has infinitely
many pairwise non-conjugate homomorphisms into MCG(S), then
Γ virtually splits (virtually acts non-trivially on a simplicial tree).

This is based on the following

Proposition.[Bestvina, Bromberg, Fujiwara] There exists an
explicitly defined finite index torsion-free subgroup BBF(S) of
MCG(S) such that the set of all subsurfaces of S can be
partitioned into a finite number of subsets C1,C2, ...,Cs , each of
which is an orbit of BBF(S), and any two subsurfaces in the same
subset overlap and have the same complexity.
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