Petar Pavešić, University of Ljubljana

ESTIMATES OF TOPOLOGICAL COMPLEXITY Dubrovnik 2011

ABSTRACT

The topological complexity TC(X) of a path connected space X is a homotopy invariant introduced by M. Farber in 2003 in his work on motion planning in robotics. TC(X) reflects the complexity of the problem of choosing a path in a space X so that the choice depends continuously on its endpoints. More precisely TC(X) is defined to to be the minimal integer n for which $X \times X$ admits an open cover $U_1, ..., U_n$ such that the fibration $(ev_0, ev_1): X^I \rightarrow$ $X \times X$ admits local sections over each U_i . This is reminiscent of the definition of LS(X) the Lusternik-Schnirelmann category of the space, and in fact the two concepts can be seen as special cases of the so-called Schwarz genus of a fibration. In a somewhat different vein Iwase and Sakai (2008) observed that the topological complexity can be seen as a fibrewise Lusternik-Schnirelmann category. Both invariants are notoriously difficult to compute, so we normally rely on the computation of various lower and upper estimates. In this talk we use the Iwase-Sakai approach to discuss some of these estimates and their relations.

This is joint work with Aleksandra Franc

$X \, {\rm path}{-}{\rm connected}$

<u>Motion plan</u> for X is a map that to every pair of points $(x_0,x_1) \in X \times X$ assigns a path $\alpha:(I,0,1) \to (X, x_0,x_1)$. In fact, such a plan exists if, and only if X is contractible.

Local motion plan over $U \subseteq X \times X$ is a map that to every pair of points $(x_0, x_1) \in U$ assigns a path $\alpha: (I, 0, 1) \rightarrow (X, x_0, x_1)$.

(Farber 2003) Topological complexity of X, TC(X), is the minimal number of local motion plans needed to cover $X \times X$.

A local motion plan over U is a local section of the evaluation fibration

 $TC(X) = secat((ev_0, ev_1): X^I \to X \times X)$

(sectional category = minimal *n*, such that *X*×*X* can be covered by *n* open sets that admit local sections)

(also called <u>Švarc genus</u> of the evaluation fibration)

IWASE – SAKAI REFORMULATION

Local section $s_U: U \to X^I$ corresponds to a vertical deformation of U to the diagonal $\Delta \subset X \times X$.

 $H: U \times I \to X \times X, \ (x, y, t) \mapsto (y, s_U(x, y)(t))$

Iwase-Sakai (2010):

$$TC(X) = fibcat \begin{pmatrix} X \times X \\ pr_1 \downarrow \uparrow \Delta \\ X \end{pmatrix}$$

<u>fibrewise (pointed) category</u> = minimal n, such that $X \times X$ can be covered by n open sets that admit vertical deformation to the diagonal

Gives more geometric approach. On each fibre get a categorical cover of X.

Topological complexity is fibrewise LS-category.

For a pointed construction $X \mapsto CX$, define $X \rtimes CX$ to be the fibrewise space over X with base point determined by the first coordinate.

Example: $X \rtimes W^n X = \{(x, x_1, ..., x_n); x_i = x \text{ for some } i\}$ (fibrewise fat wedge)

Proof: (assume X normal, all points non'degenerate) Deformations of U_i to the diagonal determine a deformation of the fibrewise product to the fibrewise fat wedge.

Ganea construction: start with $G^0X=PX$ (based paths) and $p_0:PX \rightarrow X$, and inductively define $G^{n+1}X:=G^nX \cup$ cone(fibre of p_n).

This is also a pointed construction so we get $1 \rtimes p_n: X \rtimes G^n X \to X \rtimes X$.

 $\mathrm{TC}(X) \leq n \quad \Longleftrightarrow \ 1 \rtimes p_n: X \rtimes \mathrm{G}^n X \to X \rtimes X \text{ admits a section.}$

Proof: Show

is the homotopy pullback.

LOWER BOUNDS FOR TC

We can summarize the relations in a diagram of spaces over X:

 $\Leftrightarrow 1 \rtimes \Delta_n$ lifts vertically along $1 \rtimes i_n$

By analogy with the Lusternik-Schnirelmann category define:

w'TC(X):=min{ $n; 1 \rtimes q'_n \simeq_X$ section} wTC(X):=min{n; $(1 \rtimes q_n)(1 \rtimes \Delta_n) \simeq_X$ section} cTC(X):=min{n; $\Sigma_X(1 \rtimes q_n)(1 \rtimes \Delta_n) \simeq_X$ section}

 $TC(X) \ge w'TC(X) \ge wTC(X) \ge cTC(X) \ge nil H^*(X \times X, \Delta(X))$ Conjecture: all inequalities can be strict.

Similarly

 $\sigma TC(X):=\min\{n; \text{ some } (\Sigma_X)^i (1 \rtimes q'_n) \simeq_X \text{ section } \}$

 $eTC(X):=min\{n; (1 \rtimes p_n): H_*(X \rtimes G^nX, X) \rightarrow H_*(X \times X, \Delta(X)) \text{ is epi}\}$

nil $H^*(X \times X, \Delta(X)) \leq \operatorname{eTC}(X) \leq \sigma \operatorname{TC}(X) \leq \operatorname{w'TC}(X) \leq \operatorname{TC}(X)$