Poincaré inequalities and rigidity for actions on Banach spaces

Piotr Nowak

Texas A&M University

Dubrovnik VII - June 2011

Property (T)

Property (T) was defined by Kazhdan in late 1960'ies.

We use a characterization of (T) due to Delorme – Guichardet as a definition.

Definition

A group *G* has Kazhdan's property (T) if every action of *G* by affine isometries on a Hilbert space has a fixed point. Equivalently,

$$H^1(G,\pi)=0$$

for every unitary representation π .

Generalizing (T) to other Banach spaces

X – Banach space, reflexive ($X^{**} = X$)

Example: L_p are reflexive for $1 , not reflexive for <math>p = 1, \infty$.

We are interested in groups G for which the following property holds:

every affine isometric action of G on X has a fixed point

or equivalently

$$H^1(G,\pi)=0$$

for every isometric representation π of G on X.

This is much more more difficult than for L_2 , even when $X = L_p$.

Generalizing (T) to other Banach spaces

X – Banach space, reflexive ($X^{**} = X$)

Example: L_p are reflexive for $1 , not reflexive for <math>p = 1, \infty$.

We are interested in groups *G* for which the following property holds:

every affine isometric action of G on X has a fixed point

or equivalently,

$$H^1(G,\pi)=0$$

for every isometric representation π of G on X.

This is much more more difficult than for L_2 , even when $X = L_p$.

Previous results

Only a few positive results are known:

- (T) \iff fixed points on L_p and any subspace, 1
- (T) $\Longrightarrow \exists \ \varepsilon = \varepsilon(G)$ such that fixed points always exists on L_p for $p \in [2, 2 + \varepsilon)$ (Fisher Margulis 2005) (a general argument, ε unknown)
- lattices in products of higher rank simple Lie groups for $X = L_p$ for all p > 1 (Bader Furman –Gelander Monod, 2007)
- $SL_n(\mathbb{Z}[x_1, \dots x_k])$ for $n \ge 4$; $X = L_p$ for all p > 1 (Mimura, 2010)
 - [both use a representation-theoretic Howe-Moore property]
- Gromov's random groups containing expanders for $X = L_p$, p-uniformly convex Banach lattices for all p > 1 (Naor Silberman, 2010)

[Some of these arguments also apply to Shatten p-class operators]

Previous results

Only a few positive results are known:

- (T) \iff fixed points on L_p and any subspace, 1
- (T) $\Longrightarrow \exists \varepsilon = \varepsilon(G)$ such that fixed points always exists on L_p for $p \in [2, 2 + \varepsilon)$ (Fisher – Margulis 2005) (a general argument, ε unknown)
- lattices in products of higher rank simple Lie groups for $X = L_p$ for all p > 1(Bader – Furman –Gelander – Monod, 2007)
- $SL_n(\mathbb{Z}[x_1,\ldots x_k])$ for $n \geq 4$; $X = L_p$ for all p > 1 (Mimura, 2010)
 - [both use a representation-theoretic Howe-Moore property]
- Gromov's random groups containing expanders for $X = L_p$, p-uniformly convex Banach lattices for all p > 1 (Naor – Silberman, 2010)

[Some of these arguments also apply to Shatten p-class operators]

Previous results

Some groups with property (T) admit fixed point free actions on certain L_p .

- Sp(n, 1) admits fixed point free actions on $L_p(G)$, $p \ge 4n + 2$ (Pansu 1995)
- hyperbolic groups admit fixed point free actions on ℓ_p(G) for p ≥ 2 sufficiently large (Bourdon and Pajot, 2003)
- for every hyperbolic group G there is a p > 2 (sufficiently large) such that G admits a metrically proper action by affine isometries on $\ell_p(G \times G)$ (Yu, 2006)

Values of *p* (after C. Drutu)

Consider e.g. a hyperbolic group G with property (T).

fixed points proper action exists

confdim(∂G)

There are many natural questions about the above values of p.

Let
$$\mathscr{P} = \{p : H^1(G, \pi) = 0 \text{ for every isometric rep. } \pi \text{ on } L_p\}$$

The only thing we know about \mathcal{P} is that it is open

Question: Is @ connected?

Values of *p* (after C. Drutu)

Consider e.g. a hyperbolic group G with property (T).

fixed points

proper action exists

There are many natural questions about the above values of p.

Let
$$\mathscr{P} = \{p : H^1(G, \pi) = 0 \text{ for every isometric rep. } \pi \text{ on } L_p\}$$

The only thing we know about \mathscr{P} is that it is open.

Question: Is \mathscr{P} connected?

Spectral conditions for property (T)

Based on the work of Garland,

used by Ballmann – Światkowski, Dymara – Januszkiewicz, Pansu, Żuk ...

Theorem (General form of the theorems)

Let G be acting properly discontinuously and cocompactly on a 2-dimensional contractible simplicial complex K and denote by $\lambda_1(x)$ the smallest positive eigenvalue of the discrete Laplacian on the link of a vertex $x \in K$. If

$$\lambda_1(x) > \frac{1}{2}$$

for every vertex $x \in K$ then G has property (T).

Link graphs on generating sets

G - group, $S = S^{-1}$ - finite generating set of G, $e \notin S$.

Definition

The link graph $\mathcal{L}(S) = (V, E)$ of S:

- vertices V = S,
- $(s,t) \in S \times S$ is an edge $\in E$ if $s^{-1}t \in S$.

Laplacian on $\ell_2(S, \deg)$:

$$\Delta f(s) = f(s) - \frac{1}{\deg(s)} \sum_{t \sim s} f(t)$$

 λ_1 denotes the smallest positive eigenvalue

Theorem (Żuk)

If $\mathcal{L}(S)$ connected and $\lambda_1(\mathcal{L}(S)) > \frac{1}{2}$ then G has property (T).

Poincaré inequalities

Let
$$Mf = \sum_{x \in V} f(x) \frac{\deg(x)}{\#E}$$
 be the mean value of f

Definition (p-Poincaré inequality for the norm of X)

X-Banach space, $p \ge 1$, $\Gamma = (V, E)$ - finite graph. For every $f: V \to X$

$$\left(\sum_{s\in V}\left\|f(s)-Mf\right\|_X^p\deg(s)\right)^{1/p}\leq \kappa\left(\sum_{(s,t)\in E}\left\|f(s)-f(t)\right\|_X^p\right)^{1/p}.$$

The inf of κ for $\mathcal{L}(S)$, giving the optimal constant, is denoted $\kappa_p(S, X)$

The classical p-Poincaré inequality when $X = \mathbb{R}$.

- $\kappa_1(S,\mathbb{R}) \simeq$ Cheeger isoperimetric const
- ③ for 1 ≤ p < ∞ we have $\kappa_p(S, L_p) = \kappa_p(S, \mathbb{R})$

Poincaré inequalities

Let $Mf = \sum_{x \in V} f(x) \frac{\deg(x)}{\#E}$ be the mean value of f

Definition (p-Poincaré inequality for the norm of X)

X-Banach space, $p \ge 1$, $\Gamma = (V, E)$ - finite graph. For every $f: V \to X$

$$\left(\sum_{s\in V}\left\|f(s)-Mf\right\|_X^p\deg(s)\right)^{1/p}\leq \kappa\Biggl(\sum_{(s,t)\in E}\left\|f(s)-f(t)\right\|_X^p\Biggr)^{1/p}.$$

The inf of κ for $\mathcal{L}(S)$, giving the optimal constant, is denoted $\kappa_p(S, X)$

The classical *p*-Poincaré inequality when $X = \mathbb{R}$.

- \bullet $\kappa_1(S,\mathbb{R}) \simeq$ Cheeger isoperimetric const
- $2 \kappa_2(S,\mathbb{R}) = \sqrt{\lambda_1^{-1}};$
- \bullet for $1 \leq p < \infty$ we have $\kappa_p(S, L_p) = \kappa_p(S, \mathbb{R})$

The Main Theorem

Given p > 1 denote by p^* the adjoint index: $\frac{1}{p} + \frac{1}{p^*} = 1$.

Main Theorem

Let X be a reflexive Banach space, G a group generated by S as earlier. If for some p>1

$$\max\left\{\,2^{-\frac{1}{p}}\kappa_{p}(S,X),\,\,2^{-\frac{1}{p^{*}}}\kappa_{p^{*}}(S,X^{*})\,\right\}<1$$

then

$$H^1(G,\pi)=0$$

for any isometric representation π of G on X.

Remark 1. By reflexivity, the same conclusion holds for actions on X^*

Remark 2. The roles of the two constants in the proof are different.

Sketch of proof

Difficulty: lack of self-duality when X is not a Hilbert space

For any Hilbert space $\mathcal{H}^* = \mathcal{H}$, every subspace has an orthogonal complement

For $Y \subseteq X$ Banach spaces, Y might not have a complement,

$$Y^* = X^* / \operatorname{Ann}(Y)$$

with the quotient norm

$$\|[y]\|_{Y^*} = \inf_{x \in Ann(Y)} \|y - x\|_{Y^*}$$

Example: Every separable Banach space is a quotient of $\ell_1(\mathbb{N})$.

Sketch of proof

Difficulty: lack of self-duality when X is not a Hilbert space

For any Hilbert space $\mathcal{H}^* = \mathcal{H}$, every subspace has an orthogonal complement

For $Y \subseteq X$ Banach spaces, Y might not have a complement,

$$Y^* = X^* / \operatorname{Ann}(Y)$$

with the quotient norm

$$\|[y]\|_{Y^*} = \inf_{x \in Ann(Y)} \|y - x\|_{Y^*}$$

Example: Every separable Banach space is a quotient of $\ell_1(\mathbb{N})$.

*X** is equipped with the adjoint representation,

$$\overline{\pi}_g=\pi_{g^{-1}}^*.$$

We want to show that δ is onto.

This is equivalent to δ^* having closed range.

The first step is to identify $(\operatorname{cochains}_{\pi})^*$.

Theorem

If *X*-reflexive, π – isometric representation. Then

 $(\operatorname{cochains}_{\pi})^*$ is isometrically isomorphic to $\operatorname{cochains}_{\overline{\pi}}$.

Sketch of proof: we view cochains $_\pi$ as a complemented subspace of a larger Banach space, \mathcal{Y} :

$$\mathsf{cochains}_\pi \oplus \mathcal{Z} = \mathcal{Y},$$

$$\mathsf{cochains}_{\overline{\pi}} \oplus \overline{\mathcal{Z}} = \mathcal{Y}^*.$$

Compute to get

$$(cochains_{\pi})^* = \mathcal{Y}^*/\overline{\mathcal{Z}}$$
 isomorphic to $cochains_{\overline{\pi}}$

This is not sufficient – we need an isometric isomorphism.

Theorem

If *X*-reflexive, π – isometric representation. Then

 $(\operatorname{cochains}_{\pi})^*$ is isometrically isomorphic to $\operatorname{cochains}_{\overline{\pi}}$.

Sketch of proof: we view cochains $_\pi$ as a complemented subspace of a larger Banach space, \mathcal{Y} :

$$\operatorname{cochains}_{\pi} \oplus \mathcal{Z} = \mathcal{Y},$$

$$\mathsf{cochains}_{\overline{\pi}} \oplus \overline{\mathcal{Z}} = \mathcal{Y}^*.$$

Compute to get

$$(cochains_{\pi})^* = \mathcal{Y}^*/\overline{\mathcal{Z}}$$
 isomorphic to $cochains_{\overline{\pi}}$

This is not sufficient – we need an isometric isomorphism.

We need an additional geometric condition.

Theorem

If π is isometric then

$$||c-x||_{\mathcal{Y}}=||c+x||_{\mathcal{Y}},$$

for $c \in cochains_{\overline{\pi}}$, $x \in \overline{\mathcal{Z}}$

This is an orthogonality-type condition

We need an additional geometric condition.

Theorem

If π is isometric then

$$||c - x||_{\mathcal{V}} = ||c + x||_{\mathcal{V}},$$

for $c \in cochains_{\overline{\pi}}$, $x \in \overline{\mathcal{Z}}$

This is an orthogonality-type condition

This implies: $\delta^* = 2M$, the mean value operator

Thm 1. If $2^{1/p^*} \kappa_{p^*}(S, X) < 1$ then $\delta^* i^* \overline{i}$ has closed range.

Thm 1 follows from a sequence of inequalities

It implies δ^* has closed range on image of $i^*\,\bar{i}$

The same argument for the other inequality gives: $2^{1/p} \kappa_p(S, X) < 1$ then $\overline{\delta}^* \, \overline{i}^* \, i$ has closed range

- $\Rightarrow i^* i$ has closed range
- $\Rightarrow i^* \overline{i}$ is surjective

Thm 1. If $2^{1/p^*} \kappa_{p^*}(S, X) < 1$ then $\delta^* i^* \overline{i}$ has closed range.

Thm 1 follows from a sequence of inequalities

It implies δ^* has closed range on image of $i^*\bar{i}$

The same argument for the other inequality gives: $2^{1/p}\kappa_p(S,X) < 1$ then $\overline{\delta}^* \overline{i}^* i$ has closed range

- $\Rightarrow \bar{i}^* i$ has closed range
- $\Rightarrow i^* \bar{i}$ is surjective

Applications

We want to apply this to $X = L_p$, p > 2

Desired outcome: vanishing of cohomology for all L_p ,

$$p \in [2, 2+c),$$

where we can say something about c.

Remark. This cannot be improved, in the sense that we cannot expect vanishing for all 2 :

- p-Poincaré constants > 1 for p sufficiently large
- 2 the main theorem applies to hyperbolic groups

Difficulties: estimating p-Poincaré constants is a hard problem in analysis when $p \neq 1, 2, \infty$.

A₂ groups

Cartwright, Młotkowski and Steger defined finitely presented groups G_q where $q = k^n$ for k - prime such that

 $\mathcal{L}(S) = \text{ incidence graph of a projective plane over a finite field}$

In the 60ies Feit and Higman computed spectra of such incidence graphs, which implies

$$2^{-\frac{1}{2}}\kappa_2(S,\mathbb{R}) = \sqrt{\left(1 - \frac{\sqrt{q}}{q+1}\right)^{-1}} \longrightarrow \frac{1}{\sqrt{2}}.$$

We now want to estimate $\kappa_p(S, L_p)$ for these graphs.

Estimating the *p*-Poincaré constant

When $p \ge 2$, in finite dimensional spaces: $||f||_{\ell_p^n} \le ||f||_{\ell_2^n} \le n^{1/2-1/p} ||f||_{\ell_p^n}$.

- $\#V = 2(q^2 + q + 1),$
- $\#E = 2(q^2 + q + 1)(q + 1)$
- deg(s) = q + 1 for every $s \in S$

Similarly for $p^* < 2$.

Theorem

For each q=power of a prime we have

$$H^1(G_q,\pi)=0$$

for any isometric representation π of G_a on any L_p for all

$$2 \leq p < \frac{2 \ln \left(2(q^2+q+1)\right)}{\ln \left(2(q^2+q+1)\right) - \ln \sqrt{2\left(1-\frac{\sqrt{q}}{q+1}\right)}}.$$

Numerical values of p

We have $2 \le p \le 2.106$ and $p \to 2$ as $q \to \infty$.

Numerical values of p

We have $2 \le p \le 2.106$ and $p \to 2$ as $q \to \infty$.

Numerical values of p

We have $2 \le p \le 2.106$ and $p \to 2$ as $q \to \infty$.

Hyperbolic groups

Żuk used the spectral conditions to prove that many hyperbolic groups have (T).

Because of randomness we cannot hope for explicit bounds on p.

Theorem (Żuk)

A group G in the density model for 1/3 < d < 1/2 is, with probability 1, of the form

$$H \longrightarrow \Gamma \subseteq_{f.i.} G$$
,

where G is hyperbolic and H has a link graph with $2^{-1/2}\kappa_2(S,\mathbb{R}) < 1$.

Vanishing of cohomology for all isometric representations on L_p is passed on to quotients and by finite index subgroups, just as (T) is.

Corollary

With probability 1, the main theorem applies to hyperbolic groups.

Conformal dimension

Definition (Pansu)

G hyperbolic, d_V -any visual metric on ∂G .

 $confdim(\partial G) = inf \{ dim_{Haus}(\partial G, d) : d \text{ quasi-conformally equiv. to } d_V \}.$

 $confdim(\partial G)$ is a q.i. invariant of G, extremely hard to estimate

Bourdon-Pajot, 2003: G acts without fixed points on $\ell_p(G)$ for $p \ge \operatorname{confdim}(\partial G)$

Corollary. The main theorem gives lower bounds on confdim(∂G).

Corollary

Let G be a hyperbolic group. Then for $p > \text{confdim}(\partial G)$ we have

$$2^{-1/p} \kappa_{D}(S, X) \ge 1$$
 or $2^{-1/p^*} \kappa_{D^*}(S, X^*) \ge 1$.

Applications to actions on the circle

Navas studied rigidity properties of diffeomorphic actions on the circle.

Vanishing of cohomology for L_p for p > 2 improves the differentiability class in his result.

Corollary

Let q be a power of a prime number and G_q be be the corresponding \overline{A}_2 group. Then every homomorphism $h: G \to \text{Diff}_+^{1+\alpha}(S^1)$ has finite image for

$$lpha > rac{rac{1}{2} \ln(2(q^2+q+1)(q+1)) - \ln(2) - \ln\left(\sqrt{1-rac{\sqrt{q}}{q+1}}
ight)}{\ln(q^2+q+1) + \ln(q+1)}.$$

Here, α is strictly less than $\frac{1}{2}$, improving for these groups the original differentiability class.

Final comments

- One more application to finite dimensional representations allows to estimate eigenvalues of the p-Laplacian on finite quotients of groups (some previous estimates using different techniques in joint work with R.I. Grigorchuk)
- Q: Do \widetilde{A}_2 groups admit an affine isometric action on L_p , without fixed points or metrically proper, for p sufficiently large?