Poincaré inequalities and rigidity for actions on Banach spaces

Piotr Nowak

Texas A&M University

Dubrovnik VII – June 2011
Property (T) was defined by Kazhdan in late 1960’ies.

We use a characterization of (T) due to Delorme – Guichardet as a definition.

Definition

A group G has Kazhdan’s property (T) if every action of G by affine isometries on a Hilbert space has a fixed point. Equivalently,

$$H^1(G, \pi) = 0$$

for every unitary representation π.
Generalizing (T) to other Banach spaces

X – Banach space, reflexive ($X^{**} = X$)

Example: L_p are reflexive for $1 < p < \infty$, not reflexive for $p = 1, \infty$.

We are interested in groups G for which the following property holds:

every affine isometric action of G on X has a fixed point

or equivalently,

$$H^1(G, \pi) = 0$$

for every isometric representation π of G on X.

This is much more more difficult than for L_2, even when $X = L_p$.
Generalizing (T) to other Banach spaces

X – Banach space, reflexive ($X^{**} = X$)

Example: L_p are reflexive for $1 < p < \infty$, not reflexive for $p = 1, \infty$.

We are interested in groups G for which the following property holds:

every affine isometric action of G on X has a fixed point

or equivalently,

$$H^1(G, \pi) = 0$$

for every isometric representation π of G on X.

This is much more more difficult than for L_2, even when $X = L_p$.
Previous results

Only a few positive results are known:

- $(T) \iff \text{fixed points on } L_p \text{ and any subspace, } 1 < p \leq 2$

- $(T) \implies \exists \varepsilon = \varepsilon(G) \text{ such that fixed points always exists on } L_p \text{ for } p \in [2, 2 + \varepsilon) \text{ (Fisher – Margulis 2005)}$
 (a general argument, ε unknown)

- lattices in products of higher rank simple Lie groups for $X = L_p$ for all $p > 1$
 (Bader – Furman – Gelander – Monod, 2007)

- $\text{SL}_n(\mathbb{Z}[x_1, \ldots, x_k])$ for $n \geq 4$; $X = L_p$ for all $p > 1$ (Mimura, 2010)
 [both use a representation-theoretic Howe-Moore property]

- Gromov’s random groups containing expanders for $X = L_p$, p-uniformly convex Banach lattices for all $p > 1$ (Naor – Silberman, 2010)
 [Some of these arguments also apply to Shatten p-class operators]
Previous results

Only a few positive results are known:

1. \((T) \iff \text{fixed points on } L_p \text{ and any subspace, } 1 < p \leq 2\)

2. \((T) \implies \exists \varepsilon = \varepsilon(G) \text{ such that fixed points always exists on } L_p \text{ for } p \in [2, 2 + \varepsilon) \) (Fisher – Margulis 2005)

 (a general argument, \(\varepsilon\) unknown)

3. Lattices in products of higher rank simple Lie groups for \(X = L_p\) for all \(p > 1\)
 (Bader – Furman – Gelander – Monod, 2007)

4. \(\text{SL}_n(\mathbb{Z}[x_1, \ldots x_k])\) for \(n \geq 4; X = L_p\) for all \(p > 1\) (Mimura, 2010)

 [both use a representation-theoretic Howe-Moore property]

5. Gromov’s random groups containing expanders for \(X = L_p, p\)-uniformly convex Banach lattices for all \(p > 1\) (Naor – Silberman, 2010)

 [Some of these arguments also apply to Shatten \(p\)-class operators]
Some groups with property (T) admit fixed point free actions on certain L_p.

- $Sp(n, 1)$ admits fixed point free actions on $L_p(G)$, $p \geq 4n + 2$ (Pansu 1995)

- hyperbolic groups admit fixed point free actions on $\ell_p(G)$ for $p \geq 2$ sufficiently large (Bourdon and Pajot, 2003)

- for every hyperbolic group G there is a $p > 2$ (sufficiently large) such that G admits a metrically proper action by affine isometries on $\ell_p(G \times G)$ (Yu, 2006)
Consider e.g. a hyperbolic group G with property (T).

Let $\mathcal{P} = \{p : H^1(G, \pi) = 0 \text{ for every isometric rep. } \pi \text{ on } L_p\}$

The only thing we know about \mathcal{P} is that it is open.

Question: Is \mathcal{P} connected?
Values of p (after C. Drutu)

Consider e.g. a hyperbolic group G with property (T).

Let $P = \{ p : H^1(G, \pi) = 0 \text{ for every isometric rep. } \pi \text{ on } L_p \}$

The only thing we know about P is that it is open.

Question: Is P connected?
Spectral conditions for property (T)

Based on the work of Garland, used by Ballmann – Świątkowski, Dymara – Januszkiewicz, Pansu, Żuk ...

Theorem (General form of the theorems)

Let G be acting properly discontinuously and cocompactly on a 2-dimensional contractible simplicial complex K and denote by $\lambda_1(x)$ the smallest positive eigenvalue of the discrete Laplacian on the link of a vertex $x \in K$. If

$$\lambda_1(x) > \frac{1}{2}$$

for every vertex $x \in K$ then G has property (T).
Link graphs on generating sets

G - group, $S = S^{-1}$ - finite generating set of G, $e \not\in S$.

Definition

The link graph $\mathcal{L}(S) = (V, E)$ of S:

- vertices $V = S$,
- $(s, t) \in S \times S$ is an edge $\in E$ if $s^{-1}t \in S$.

Laplacian on $\ell_2(S, \text{deg})$:

$$\Delta f(s) = f(s) - \frac{1}{\text{deg}(s)} \sum_{t \sim s} f(t)$$

λ_1 denotes the smallest positive eigenvalue

Theorem (Žuk)

If $\mathcal{L}(S)$ connected and $\lambda_1(\mathcal{L}(S)) > \frac{1}{2}$ then G has property (T).
Let $Mf = \sum_{x \in V} f(x) \frac{\deg(x)}{\#E}$ be the mean value of f

Definition (p-Poincaré inequality for the norm of X)

For every $f : V \rightarrow X$ in an X-Banach space, $p \geq 1$, $\Gamma = (V, E)$ - finite graph.

\[
\left(\sum_{s \in V} \|f(s) - Mf\|_X^p \deg(s) \right)^{1/p} \leq \kappa \left(\sum_{(s,t) \in E} \|f(s) - f(t)\|_X^p \right)^{1/p}.
\]

The inf of κ for $L(S)$, giving the optimal constant, is denoted $\kappa_p(S, X)$

The classical p-Poincaré inequality when $X = \mathbb{R}$.

1. $\kappa_1(S, \mathbb{R}) \simeq$ Cheeger isoperimetric const
2. $\kappa_2(S, \mathbb{R}) = \sqrt{\lambda_1^{-1}}$;
3. for $1 \leq p < \infty$ we have $\kappa_p(S, L_p) = \kappa_p(S, \mathbb{R})$
Let $Mf = \sum_{x \in V} f(x) \frac{\deg(x)}{\#E}$ be the mean value of f.

Definition (p-Poincaré inequality for the norm of X)

Let X be a Banach space, $p \geq 1$, $\Gamma = (V, E)$ - finite graph. For every $f : V \to X$:

$$\left(\sum_{s \in V} \|f(s) - Mf\|_X^p \deg(s) \right)^{1/p} \leq \kappa \left(\sum_{(s,t) \in E} \|f(s) - f(t)\|_X^p \right)^{1/p}.$$

The inf of κ for $L^p(S)$, giving the optimal constant, is denoted $\kappa_p(S, X)$.

The classical p-Poincaré inequality when $X = \mathbb{R}$:

1. $\kappa_1(S, \mathbb{R}) \approx$ Cheeger isoperimetric const
2. $\kappa_2(S, \mathbb{R}) = \sqrt{\lambda_1^{-1}}$
3. for $1 \leq p < \infty$ we have $\kappa_p(S, L_p) = \kappa_p(S, \mathbb{R})$
The Main Theorem

Given $p > 1$ denote by p^* the adjoint index: \[\frac{1}{p} + \frac{1}{p^*} = 1. \]

Main Theorem

Let X be a reflexive Banach space, G a group generated by S as earlier. If for some $p > 1$

\[\max\left\{ 2^{-\frac{1}{p}} \kappa_p(S, X), 2^{-\frac{1}{p^*}} \kappa_{p^*}(S, X^*) \right\} < 1 \]

then

\[H^1(G, \pi) = 0 \]

for any isometric representation π of G on X.

Remark 1. By reflexivity, the same conclusion holds for actions on X^*

Remark 2. The roles of the two constants in the proof are different.
Sketch of proof

Difficulty: lack of self-duality when X is not a Hilbert space

For any Hilbert space $\mathcal{H}^* = \mathcal{H}$, every subspace has an orthogonal complement

For $Y \subseteq X$ Banach spaces, Y might not have a complement,

$$Y^* = X^*/\text{Ann}(Y)$$

with the quotient norm

$$\| [y] \|_{Y^*} = \inf_{x \in \text{Ann}(Y)} \|y - x\|_{Y^*}$$

Example: Every separable Banach space is a quotient of $\ell_1(\mathbb{N})$.
Sketch of proof

Difficulty: lack of self-duality when X is not a Hilbert space

For any Hilbert space $\mathcal{H}^* = \mathcal{H}$, every subspace has an orthogonal complement.

For $Y \subseteq X$ Banach spaces, Y might not have a complement,

$$Y^* = X^*/\text{Ann}(Y)$$

with the quotient norm

$$\| [y] \|_{Y^*} = \inf_{x \in \text{Ann}(Y)} \|y - x\|_{Y^*}$$

Example: Every separable Banach space is a quotient of $\ell_1(\mathbb{N})$.
X^* is equipped with the adjoint representation, $\overline{\pi} g = \pi^* g^{-1}$.

We want to show that δ is onto.

This is equivalent to δ^* having closed range.

The first step is to identify $(\text{cochains}_\pi)^*$.

$\delta v(s) = v - \pi_s v$
Theorem

If X-reflexive, π – isometric representation. Then

$$(\text{cochains}_\pi)^*$$ is isometrically isomorphic to $\text{cochains}_{\bar{\pi}}$.

Sketch of proof: we view cochains_π as a complemented subspace of a larger Banach space, \mathcal{Y}:

$$\text{cochains}_\pi \oplus \mathcal{Z} = \mathcal{Y},$$

$$\text{cochains}_{\bar{\pi}} \oplus \overline{\mathcal{Z}} = \mathcal{Y}^*.$$

Compute to get

$$(\text{cochains}_\pi)^* = \frac{\mathcal{Y}^*}{\overline{\mathcal{Z}}} \text{ isomorphic to } \text{cochains}_{\bar{\pi}}$$

This is not sufficient – we need an isometric isomorphism.
Theorem

If X-reflexive, π – isometric representation. Then

$$(\text{cochains}_\pi)^*$$ is isometrically isomorphic to $\text{cochains}_{\overline{\pi}}$.

Sketch of proof: we view cochains π as a complemented subspace of a larger Banach space, \mathcal{Y}:

$$\text{cochains}_\pi \oplus \mathcal{Z} = \mathcal{Y},$$

$$\text{cochains}_{\overline{\pi}} \oplus \overline{\mathcal{Z}} = \mathcal{Y}^*.$$

Compute to get

$$(\text{cochains}_\pi)^* = \mathcal{Y}^*/\overline{\mathcal{Z}} \text{ isomorphic to } \text{cochains}_{\overline{\pi}}$$

This is not sufficient – we need an isometric isomorphism.
We need an additional geometric condition.

Theorem

If \(\pi \) is isometric then

\[
\|c - x\|_Y = \|c + x\|_Y,
\]

for \(c \in \text{cochains}_\pi \), \(x \in \overline{Z} \)

This is an orthogonality-type condition

This implies: \(\delta^* = 2M \), the mean value operator
We need an additional geometric condition.

Theorem

If π is isometric then

$$\|c - x\|_Y = \|c + x\|_Y,$$

for $c \in \text{cochains}_{\pi}$, $x \in \overline{Z}$

This is an orthogonality-type condition

This implies: $\delta^* = 2M$, the mean value operator
Thm 1. If $2^{1/p^*}\kappa_p(S, X) < 1$ then $\delta^* i^* \bar{i}$ has closed range.

Thm 1 follows from a sequence of inequalities.

It implies δ^* has closed range on image of $i^* \bar{i}$.

The same argument for the other inequality gives:

$2^{1/p} \kappa_p(S, X) < 1$ then $\delta^* \bar{i}^* i$ has closed range

$\Rightarrow \bar{i}^* i$ has closed range

$\Rightarrow i^* \bar{i}$ is surjective
Thm 1. If $2^{1/p^*} \kappa_{p^*}(S, X) < 1$ then $\delta^* i^* \bar{i}$ has closed range.

Thm 1 follows from a sequence of inequalities.

It implies δ^* has closed range on image of $i^* \bar{i}$.

The same argument for the other inequality gives:

$2^{1/p} \kappa_p(S, X) < 1$ then $\overline{\delta^* i^*} \ i \ has \ closed \ range$

$\Rightarrow \ i^* \bar{i} \ has \ closed \ range$

$\Rightarrow \ i^* \bar{i} \ is \ surjective$
We want to apply this to $X = L_p, \ p > 2$

Desired outcome: vanishing of cohomology for all $L_p, \ p \in [2, 2 + c)$, where we can say something about c.

Remark. This cannot be improved, in the sense that we cannot expect vanishing for all $2 < p < \infty$:

1. p-Poincaré constants > 1 for p sufficiently large
2. the main theorem applies to hyperbolic groups

Difficulties: estimating p-Poincaré constants is a hard problem in analysis when $p \neq 1, 2, \infty$.
Cartwright, Młotkowski and Steger defined finitely presented groups G_q where $q = k^n$ for k - prime such that

$$\mathcal{L}(S) = \text{incidence graph of a projective plane over a finite field}$$

In the 60ies Feit and Higman computed spectra of such incidence graphs, which implies

$$2^{-\frac{1}{2}}\kappa_2(S, \mathbb{R}) = \sqrt{\left(1 - \frac{\sqrt{q}}{q + 1}\right)^{-1}} \quad \rightarrow \quad \frac{1}{\sqrt{2}}.$$

We now want to estimate $\kappa_p(S, L_p)$ for these graphs.
Estimating the p-Poincaré constant

When $p \geq 2$, in finite dimensional spaces: $\|f\|_{\ell_p^n} \leq \|f\|_{\ell_2^n} \leq n^{1/2 - 1/p} \|f\|_{\ell_p^n}$.

- $\# V = 2(q^2 + q + 1)$,
- $\# E = 2(q^2 + q + 1)(q + 1)$
- $\deg(s) = q + 1$ for every $s \in S$

Similarly for $p^* < 2$.

Theorem

For each q=power of a prime we have

$$H^1(G_q, \pi) = 0$$

for any isometric representation π of G_q on any L_p for all

$$2 \leq p < \frac{2 \ln \left(2(q^2 + q + 1)\right)}{\ln \left(2(q^2 + q + 1)\right) - \ln \sqrt{2 \left(1 - \frac{\sqrt{q}}{q + 1}\right)}}.$$
Numerical values of p

We have $2 \leq p \leq 2.106$ and $p \to 2$ as $q \to \infty$.
Numerical values of p

We have $2 \leq p \leq 2.106$ and $p \to 2$ as $q \to \infty$.
We have $2 \leq p \leq 2.106$ and $p \to 2$ as $q \to \infty$.
Hyperbolic groups

\[\dot{\text{Zuk}} \text{ used the spectral conditions to prove that many hyperbolic groups have (T).} \]

Because of randomness we cannot hope for explicit bounds on \(p \).

Theorem (\dot{\text{Zuk}})

A group \(G \) in the density model for \(\frac{1}{3} < d < \frac{1}{2} \) is, with probability 1, of the form

\[H \rightarrow \Gamma \subseteq_{f.i.} G, \]

where \(G \) is hyperbolic and \(H \) has a link graph with \(2^{-1/2} \kappa_2(S, \mathbb{R}) < 1 \).

Vanishing of cohomology for all isometric representations on \(L_p \) is passed on to quotients and by finite index subgroups, just as (T) is.

Corollary

With probability 1, the main theorem applies to hyperbolic groups.
Conformal dimension

Definition (Pansu)

G hyperbolic, d_V - any visual metric on ∂G.

$$\text{confdim}(\partial G) = \inf \{ \dim_{\text{Haus}}(\partial G, d) : d \text{ quasi-conformally equiv. to } d_V \}.$$

$\text{confdim}(\partial G)$ is a q.i. invariant of G, extremely hard to estimate.

Bourdon-Pajot, 2003: G acts without fixed points on $\ell_p(G)$ for $p \geq \text{confdim}(\partial G)$

Corollary. The main theorem gives lower bounds on $\text{confdim}(\partial G)$.

Corollary

Let G be a hyperbolic group. Then for $p > \text{confdim}(\partial G)$ we have

$$2^{-1/p} \kappa_p(S, X) \geq 1 \quad \text{or} \quad 2^{-1/p^*} \kappa_{p^*}(S, X^*) \geq 1.$$
Navas studied rigidity properties of diffeomorphic actions on the circle. Vanishing of cohomology for L_p for $p > 2$ improves the differentiability class in his result.

Corollary

Let q be a power of a prime number and G_q be the corresponding \tilde{A}_2 group. Then every homomorphism $h : G \rightarrow \text{Diff}^{1+\alpha}(S^1)$ has finite image for

$$\alpha > \frac{1}{2} \ln(2(q^2 + q + 1)(q + 1)) - \ln(2) - \ln\left(\sqrt{1 - \frac{\sqrt{q}}{q + 1}}\right) \frac{\ln(q^2 + q + 1) + \ln(q + 1)}{\ln(q^2 + q + 1) + \ln(q + 1)}.$$

Here, α is strictly less than $\frac{1}{2}$, improving for these groups the original differentiability class.
One more application to finite dimensional representations allows to estimate eigenvalues of the p-Laplacian on finite quotients of groups (some previous estimates using different techniques in joint work with R.I. Grigorchuk)

Q: Do \widetilde{A}_2 groups admit an affine isometric action on L_p, without fixed points or metrically proper, for p sufficiently large?