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Motivation

I M is a compact surface, ω is area form on M. Diff (M, ω) is
the group of area-preserving diffeomorphisms of M.

I Zimmer’s Program (prediction): If Λ is a lattice of rank ≥ 2
(e.g. SL(3,Z)) then Λ cannot embed in Diff (M, ω).

I Note: SL(3,Z) embeds in Diff (S2).

I Negative results: L. Polterovich; Franks and Handel: A
non-uniform lattice of rank ≥ 2 cannot embed in Diff (M, ω).
A non-uniform (irreducible) lattice in a Lie group (different
from O(n, 1)) cannot embed in Diff (M, ω) if χ(M) ≤ 0.

I Question: What happens with lattices in O(n, 1)?
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Ham

I ω is a symplectic form on a manifold M (a closed,
nondegenerate 2-form, e.g., area form on a surface).
H = Ht : M → R is a time-dependent smooth function. XH is
the Hamiltonian vector field of H:

I dH(ξ) = ω(XH , ξ), i.e., XH is the “symplectic gradient.”

I ∂
∂t ft = XH is the Hamiltonian flow of H. Maps ft are
Hamiltonian symplectomorphisms of (M, ω).

I Ham(M, ω) is the group of Hamiltonian symplectomorphisms.
If M is a surface, Ham(M, ω) ⊂ Diff (M, ω).

I Note: If M is a surface, then, as a group, Ham(M, ω) is
independent of ω (Mozer); thus, Ham(M, ω) = Ham(M).
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RAAGs

I Warning: Our convention is opposite to the standard (but is
consistent with Dynkin diagrams).

I Γ is a finite graph (1-dimensional simplicial complex), V (Γ) is
the vertex set, E (Γ) is the edge set.

I Right-Angled Artin Group (RAAG)
GΓ = 〈gv , v ∈ V (Γ)|[gv , gw ] = 1, [v ,w ] /∈ E (Γ)〉.

I Examples: Free groups, free abelian groups,...

I Theorem (Bergeron, Haglind, Wise): If Γ is an arithmetic
lattice in O(n, 1) of the simplest type then a finite-index
subgroup in Γ embeds in some RAAG.
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RAAGs in Ham

I Main Theorem. Every RAAG embeds in every Ham: For
every symplectic manifold (M, ω) and every RAAG GΓ, there
exists an embedding GΓ ↪→ Ham(M, ω).

I Corollary. For every n there exist finite volume hyperbolic
n-manifolds N (compact and not) so that π1(N) embeds in
every Ham.

I The most difficult case is M = S2.
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Outline of the proof

I Step 1. Embed given G = GΓ in Ham(M) for some surface
M of genus depending on Γ.

I Step 2. Lift the action of G to the universal cover of M
(hyperbolic plane H2). The (faithful) action of G extends
(topologically) to the rest of S2 by the identity.

I Replace the hyperbolic area form with spherical, modify the
action of G so that it extends to a Lipschitz, faithful,
area-preserving action on S2. The action fixes the exterior of
H2.

I Step 3. Smooth out the action preserving faithfulness.
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Step 1 (topology)

I Embed the graph Γ in M for some surface M of genus 6= 1.

I Thicken Γ ⊂ M: Replace each vertex v by a domain Dv so
that the nerve of the collection {Dv} is Γ.

I Pick functions Hv supported on Dv and let fv be the time-1
maps of the associated Hamiltonian flows. Then each fv is
also supported in Dv .

I Since Dv ∩ Dw = ∅ whenever [v ,w ] /∈ E (Γ), [fv , fw ] = 1 and
we get a homomorphism GΓ → Ham(M),

I given by ρ(gv ) = fv .

I Such ρ is probably faithful for “generic” functions Hv , but I
do not know how to prove it!
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Step 1: Cntd

I Instead of “generic” Hv ’s we will use non-generic ones.

I Take Dv = A(v) to be homotopically trivial annuli in M which
intersect in pairs of squares.

I
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A(v) A(w)P

Figure: Points pi , q are punctures to be removed from the surface.
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Step 1: Cntd
I On each annulus A(v) = S1 × [−1, 1] take Hv to be a height

function h(τ) so that h′(0) = 2π, h vanishes at −1, 1 with all
its derivaives.

I Then the time-1 Hamiltonian map f is a “double Dehn twist”
or “point-pushing map” rotating the circle S1 × 0 by 2π.

I

A

α

f(  )α

Figure: Point-pushing map (up to C 0 relative isotopy).



Step 1: Cntd
I On each annulus A(v) = S1 × [−1, 1] take Hv to be a height

function h(τ) so that h′(0) = 2π, h vanishes at −1, 1 with all
its derivaives.

I Then the time-1 Hamiltonian map f is a “double Dehn twist”
or “point-pushing map” rotating the circle S1 × 0 by 2π.

I

A

α

f(  )α

Figure: Point-pushing map (up to C 0 relative isotopy).



Step 1: Cntd
I On each annulus A(v) = S1 × [−1, 1] take Hv to be a height

function h(τ) so that h′(0) = 2π, h vanishes at −1, 1 with all
its derivaives.

I Then the time-1 Hamiltonian map f is a “double Dehn twist”
or “point-pushing map” rotating the circle S1 × 0 by 2π.

I

A

α

f(  )α

Figure: Point-pushing map (up to C 0 relative isotopy).



End of Step 1

I Then the maps fv fix middle circles of the annuli A(v) (and
points outside the annuli) and, hence, induce elements of the
mapping class group Map(M ′) of the punctured surface
M ′ = M − {pi , q}.

I I’d like to claim that the homomorphism GΓ → Map(M ′) is
1-1. But this is still unclear. Nevertheless

I (Corollary of) a Theorem by Funar (c.f. Koberda;
Clay, Leininger and Mangahas) is that if we use for fv time-2
Hamiltonian maps, then ρ : GΓ → Map(M ′) is 1-1.

I This does the job if M is S2.

I But Γ need not be planar.

I One can show (with a bit of trickery) that if Γ admits a finite
planar orbi-cover Λ→ Γ then GΓ ↪→ GΛ and we are again OK.
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Step 2 (hyperbolic geometry)

I Of course, the universal cover of every graph is planar.

I Let unit disk D = H2 → M be the universal cover (recall that
χ(M) 6= 0). Use this cover to lift each fv to a product of
infinitely many commuting twists.

I We get a (faithful) representation ρ̃ : GΓ → Ham(H2) (with
hyperbolic area form). Moreover, if D ′ is the infinitely
punctured disk covering M ′ then G = GΓ → Map(D ′) is still
1-1.

I Since all elements of ρ(G ) are homotopically trivial, ρ̃(G )
extends by the identity to the rest of S2.

I Problem: 1) The extension is only Holder; 2) more
importantly, ρ̃(G ) preserves wrong area form.

I Let ω0 be the spherical area form on S2.

I We can lift functions Hv to D and try to use ω0 to define new
time-2 Hamiltonian maps using these functions. The resulting
maps preserve ω0 on D, but ...
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Step 2: Cntd

I ... The lifted functions H̃v do not extend continuously by 0 to
the unit circle...

I Even worse, the new time-2 maps are not in the (relative)
isotopy class of the lifts of the maps fv (or may not even
preserve D ′), so we cannot be sure that the representation is
1-1.

I If z ∈ D, then (1− |z |)2ωhyp(z) � ω0(z).

I Hence, the Hamiltonian vector field (with respect to ω0) of
H̃v at z is about (1− |z |)−2× what we need for a double
Dehn twist.

I Thus, we have to replace H̃v with new functions
Ĥv (z) � (1− |z |)2H̃v (z), so that

I the resulting time-1 maps (with respect to ω0) are double
Dehn twists.
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Step 2: Cntd

I We then get a new representation ρ̂ : G → Ham(D) which
preserves D ′ and, moreover, has the same projection to
Map(D ′) as ρ̃.

I In particular: ρ̂ is 1-1.

I Now, there are good news and bad news.

I Good: The new functions Ĥv admit C 1,1 extension by 0 from
D to the rest of S2.

I In particular, the action of the group ρ̂(G ) on D extends to a
Lipschitz action on S2 (by the identity).

I Bad: The 2-nd and higher derivatives of Ĥv blow up on the
boundary of D, while the 1st derivatives are only bounded, so
we do not even get a C 1–action on S2.

I Good: The blow-up is only polynomial in z .
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boundary of D, while the 1st derivatives are only bounded, so
we do not even get a C 1–action on S2.

I Good: The blow-up is only polynomial in z .



Step 2: Cntd

I We then get a new representation ρ̂ : G → Ham(D) which
preserves D ′ and, moreover, has the same projection to
Map(D ′) as ρ̃.

I In particular: ρ̂ is 1-1.

I Now, there are good news and bad news.
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Step 3 (analysis: mollification)

I The idea is to smooth out the action ρ̂ of G on S2 preserving
faithfulness.

I Let ηε(z), ε ∈ (0, 1] be a real-analytic family of
bump-functions (“mollifiers”) on D which vanish
(exponentially fast with derivatives of all orders) on the
boundary circle, so that ηε → η0 = 1 (uniformly on compacts
in D).

I Then, replace each Ĥv with ηεĤv . Now, these functions
extends to C∞ on S2 for ε > 0.

I Obtain new (C∞) time-2 maps f̂v ,ε using the functions ηεĤv .

I The result is again a family of representations
ρ̂ε : G → Ham(S2), gv 7→ f̂v ,ε.

I Why would these ρ̂ε be faithful for small ε?

I I have no idea...
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extends to C∞ on S2 for ε > 0.

I Obtain new (C∞) time-2 maps f̂v ,ε using the functions ηεĤv .
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Step 3: Cntd

I The point however, is that f̂v ,ε|D depends real-analytically on
ε for ε > 0.

I Therefore, for each g ∈ G − 1 the set Eg := {ε : ρ̂ε(g) = 1} is
either at most countable or Eg = [0, 1].

I But the latter is impossible since ρ̂ = ρ̂0 is faithful.

I Since G is countable, for generic ε, ρ̂ε is faithful.

I I do not know what happens for non-generic ε, even those
close to 0.
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Getting to Ham(M , ω) for an arbitrary symplectic manifold

I Hence, we obtain embeddings G ↪→ Ham(S2) which are
supported in D̄.

I Therefore, we can promote these embeddings to embeddings
G ↪→ Ham(M) for any surface M (by identity outside of a
small disk D ⊂ M).

I Let M have dimension 2n. Consider a small polydisk
Dn = B2n ⊂ M.

I Extend the faithful Hamiltonian action GΓ y D diagonally to
Dn.

I Then extend the diagonal action by the identity to the rest of
M.
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Generalizations

I Question 1. Can one improve the main theorem to an
embedding GΓ ↪→ Diff (S1)?

I For example: Take Λ which is a connected linear graph on n
vertices. Is it true that for every finite graph Γ there exists an
embedding GΓ → GΛ?

I If this is the case, then, since Λ embeds in S1, GΛ ↪→ Diff (S1),
so we should also get an embedding GΓ ↪→ Diff (S1).
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Generalizations

I Question 2. Do non-right angled Artin groups embed in
Diff (S2, ω)?

I Unclear even for the braid groups.

I Question 3. Suppose that Λ is a uniform lattice in SU(2, 1).
Can Λ embed in some RAAG?

I Not a single example is known.

I Note: All RAAGs are locally indicable (every f.g. subgroup
has infinite abelianization). On the other hand, there are
uniform lattices in SU(2, 1) which are not known to have
virtually positive b1.
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