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» M is a compact surface, w is area form on M. Diff(M,w) is
the group of area-preserving diffeomorphisms of M.

» Zimmer's Program (prediction): If A is a lattice of rank > 2
(e.g. SL(3,Z)) then A cannot embed in Diff (M, w).

> Note: SL(3,7Z) embeds in Diff (5?).

» Negative results: L. Polterovich; Franks and Handel: A
non-uniform lattice of rank > 2 cannot embed in Diff(M,w).
A non-uniform (irreducible) lattice in a Lie group (different
from O(n, 1)) cannot embed in Diff(M,w) if x(M) < 0.

» Question: What happens with lattices in O(n,1)?
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Ham

> w is a symplectic form on a manifold M (a closed,
nondegenerate 2-form, e.g., area form on a surface).
H = H;: M — R is a time-dependent smooth function. Xy is
the Hamiltonian vector field of H:

> dH(&) = w(Xy,§), i.e., Xy is the “symplectic gradient.”

> %ft = Xy is the Hamiltonian flow of H. Maps f; are
Hamiltonian symplectomorphisms of (M, w).

» Ham(M,w) is the group of Hamiltonian symplectomorphisms.
If M is a surface, Ham(M,w) C Diff(M,w).

» Note: If M is a surface, then, as a group, Ham(M, w) is
independent of w (Mozer); thus, Ham(M,w) = Ham(M).
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» Warning: Our convention is opposite to the standard (but is
consistent with Dynkin diagrams).

» [ is a finite graph (1-dimensional simplicial complex), V(') is
the vertex set, E(I) is the edge set.

» Right-Angled Artin Group (RAAG)
Gr = (gv,v € V(Nllgv. 8wl = L. [v,w] ¢ E(T)).

» Examples: Free groups, free abelian groups,...

» Theorem (Bergeron, Haglind, Wise): If ' is an arithmetic

lattice in O(n, 1) of the simplest type then a finite-index
subgroup in I embeds in some RAAG.
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» Main Theorem. Every RAAG embeds in every Ham: For
every symplectic manifold (M, w) and every RAAG Gr, there
exists an embedding Gr — Ham(M,w).

» Corollary. For every n there exist finite volume hyperbolic
n-manifolds N (compact and not) so that 71 (/N) embeds in
every Ham.

» The most difficult case is M = S2.
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» Step 1. Embed given G = Gy in Ham(M) for some surface
M of genus depending on T.

» Step 2. Lift the action of G to the universal cover of M
(hyperbolic plane H?). The (faithful) action of G extends
(topologically) to the rest of S? by the identity.

» Replace the hyperbolic area form with spherical, modify the
action of G so that it extends to a Lipschitz, faithful,
area-preserving action on S2. The action fixes the exterior of
H?.

» Step 3. Smooth out the action preserving faithfulness.
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» Embed the graph I in M for some surface M of genus # 1.
» Thicken ' C M: Replace each vertex v by a domain D, so
that the nerve of the collection {D,} is T.

» Pick functions H, supported on D, and let f, be the time-1
maps of the associated Hamiltonian flows. Then each f, is
also supported in D, .

» Since D, N D,, = () whenever [v,w] ¢ E(T), [f,,fs] =1 and
we get a homomorphism Gr — Ham(M),

> given by p(gy) = f,.
» Such p is probably faithful for “generic” functions H,, but |
do not know how to prove it!
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Figure: Points p;, g are punctures to be removed from the surface.
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function h(7) so that #’(0) = 27, h vanishes at —1, 1 with all
its derivaives.

» Then the time-1 Hamiltonian map f is a “double Dehn twist”
or “point-pushing map” rotating the circle S x 0 by 2.

A

>

Figure: Point-pushing map (up to C° relative isotopy).
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» Then the maps f, fix middle circles of the annuli A(v) (and
points outside the annuli) and, hence, induce elements of the
mapping class group Map(M’) of the punctured surface
M =M —{pi,q}.

» I'd like to claim that the homomorphism Gr — Map(M') is
1-1. But this is still unclear. Nevertheless

» (Corollary of) a Theorem by Funar (c.f. Koberda;

Clay, Leininger and Mangahas) is that if we use for f, time-2
Hamiltonian maps, then p : Gr — Map(M’) is 1-1.
» This does the job if M is S2.

» But I need not be planar.

» One can show (with a bit of trickery) that if I admits a finite
planar orbi-cover A — I then Gr — Gp and we are again OK.
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» Of course, the universal cover of every graph is planar.

> Let unit disk D = H? — M be the universal cover (recall that
X(M) # 0). Use this cover to lift each f, to a product of
infinitely many commuting twists.

> We get a (faithful) representation j : Gr — Ham(H?) (with
hyperbolic area form). Moreover, if D’ is the infinitely
punctured disk covering M’ then G = Gr — Map(D’) is still
1-1.

» Since all elements of p(G) are homotopically trivial, §(G)
extends by the identity to the rest of S2.

» Problem: 1) The extension is only Holder; 2) more
importantly, §(G) preserves wrong area form.

> Let wp be the spherical area form on S2.

» We can lift functions H, to D and try to use wqg to define new
time-2 Hamiltonian maps using these functions. The resulting
maps preserve wg on D, but ...
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... The lifted functions H, do not extend continuously by 0 to
the unit circle...

Even worse, the new time-2 maps are not in the (relative)
isotopy class of the lifts of the maps £, (or may not even
preserve D), so we cannot be sure that the representation is
1-1.

> If z € D, then (1 — |z|)2whyp(z) < wo(z).

Hence, the Hamiltonian vector field (with respect to wq) of
H, at z is about (1 — |z|)72x what we need for a double
Dehn twist.

Thus, we have to replace I:lv with new functions

H,(z) = (1 — |z|)®H,(z), so that

the resulting time-1 maps (with respect to wp) are double
Dehn twists.
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» We then get a new representation p: G — Ham(D) which
preserves D’ and, moreover, has the same projection to
Map(D’) as p.

» In particular: pis 1-1.

» Now, there are good news and bad news.

» Good: The new functions A, admit C1! extension by 0 from
D to the rest of S2.

» In particular, the action of the group p(G) on D extends to a
Lipschitz action on S? (by the identity).

» Bad: The 2-nd and higher derivatives of A, blow up on the
boundary of D, while the 1st derivatives are only bounded, so
we do not even get a C'-action on S2.

» Good: The blow-up is only polynomial in z.
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The idea is to smooth out the action p of G on S? preserving
faithfulness.

Let ne(z), € € (0,1] be a real-analytic family of
bump-functions (“mollifiers”) on D which vanish
(exponentially fast with derivatives of all orders) on the
boundary circle, so that 7. — 1o = 1 (uniformly on compacts
in D).

Then, replace each A, with 776/:/‘,. Now, these functions
extends to C* on S2 for ¢ > 0.

» Obtain new (C*°) time-2 maps ?V,E using the functions ngl:lv.

v

The result is again a family of representations
pe : G — Ham(5?), g, — fy .

Why would these j. be faithful for small €?

| have no idea...
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Step 3: Cntd

v

The point however, is that ?\AE]D depends real-analytically on
€ for e > 0.

Therefore, for each g € G — 1 the set E; = {€: p(g) =1} is
either at most countable or E; = [0, 1].

v

v

But the latter is impossible since p = pg is faithful.

v

Since G is countable, for generic €, j. is faithful.

v

| do not know what happens for non-generic €, even those
close to 0.
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Getting to Ham(M, w) for an arbitrary symplectic manifold

> Hence, we obtain embeddings G < Ham(5?) which are
supported in D.

» Therefore, we can promote these embeddings to embeddings
G — Ham(M) for any surface M (by identity outside of a
small disk D C M).

» Let M have dimension 2n. Consider a small polydisk

D" = B>" C M.
» Extend the faithful Hamiltonian action Gr ~ D diagonally to
D".

» Then extend the diagonal action by the identity to the rest of
M.
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Generalizations

» Question 1. Can one improve the main theorem to an
embedding Gr — Diff(S')?

» For example: Take A which is a connected linear graph on n
vertices. Is it true that for every finite graph I there exists an
embedding Gr — Gp?

> If this is the case, then, since A embeds in S*, Gy — Diff (S!),
so we should also get an embedding Gr — Diff (S1).
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Generalizations

» Question 2. Do non-right angled Artin groups embed in
Diff (52, w)?
» Unclear even for the braid groups.

» Question 3. Suppose that A is a uniform lattice in SU(2,1).
Can A embed in some RAAG?

» Not a single example is known.

» Note: All RAAGs are locally indicable (every f.g. subgroup
has infinite abelianization). On the other hand, there are
uniform lattices in SU(2,1) which are not known to have
virtually positive b;.



