Misha Kapovich UC Davis

June 30, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

M is a compact surface, ω is area form on M. Diff(M,ω) is the group of area-preserving diffeomorphisms of M.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- M is a compact surface, ω is area form on M. Diff(M,ω) is the group of area-preserving diffeomorphisms of M.
- ► Zimmer's Program (prediction): If Λ is a lattice of rank ≥ 2 (e.g. SL(3, Z)) then Λ cannot embed in Diff(M, ω).

- M is a compact surface, ω is area form on M. Diff(M,ω) is the group of area-preserving diffeomorphisms of M.
- ► Zimmer's Program (prediction): If Λ is a lattice of rank ≥ 2 (e.g. SL(3, Z)) then Λ cannot embed in Diff(M, ω).

▶ Note: $SL(3,\mathbb{Z})$ embeds in $Diff(S^2)$.

- M is a compact surface, ω is area form on M. Diff(M,ω) is the group of area-preserving diffeomorphisms of M.
- ► Zimmer's Program (prediction): If Λ is a lattice of rank ≥ 2 (e.g. SL(3, Z)) then Λ cannot embed in Diff(M, ω).
- ▶ Note: $SL(3, \mathbb{Z})$ embeds in $Diff(S^2)$.
- Negative results: L. Polterovich; Franks and Handel: A non-uniform lattice of rank ≥ 2 cannot embed in Diff(M, ω). A non-uniform (irreducible) lattice in a Lie group (different from O(n, 1)) cannot embed in Diff(M, ω) if χ(M) ≤ 0.

- M is a compact surface, ω is area form on M. Diff(M,ω) is the group of area-preserving diffeomorphisms of M.
- ► Zimmer's Program (prediction): If Λ is a lattice of rank ≥ 2 (e.g. SL(3, Z)) then Λ cannot embed in Diff(M, ω).
- Note: $SL(3,\mathbb{Z})$ embeds in $Diff(S^2)$.
- Negative results: L. Polterovich; Franks and Handel: A non-uniform lattice of rank ≥ 2 cannot embed in Diff(M, ω). A non-uniform (irreducible) lattice in a Lie group (different from O(n, 1)) cannot embed in Diff(M, ω) if χ(M) ≤ 0.

• Question: What happens with lattices in O(n, 1)?

• ω is a symplectic form on a manifold M (a closed, nondegenerate 2-form, e.g., area form on a surface). $H = H_t : M \to \mathbb{R}$ is a time-dependent smooth function. X_H is the Hamiltonian vector field of H:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ω is a symplectic form on a manifold M (a closed, nondegenerate 2-form, e.g., area form on a surface).
 H = H_t : M → ℝ is a time-dependent smooth function. X_H is the Hamiltonian vector field of H:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$dH(\xi) = \omega(X_H, \xi)$$
, i.e., X_H is the "symplectic gradient."

ω is a symplectic form on a manifold M (a closed, nondegenerate 2-form, e.g., area form on a surface).
 H = H_t : M → ℝ is a time-dependent smooth function. X_H is the Hamiltonian vector field of H:

- $dH(\xi) = \omega(X_H, \xi)$, i.e., X_H is the "symplectic gradient."
- $\frac{\partial}{\partial t} f_t = X_H$ is the Hamiltonian flow of H. Maps f_t are Hamiltonian symplectomorphisms of (M, ω) .

- ω is a symplectic form on a manifold M (a closed, nondegenerate 2-form, e.g., area form on a surface).
 H = H_t : M → ℝ is a time-dependent smooth function. X_H is the Hamiltonian vector field of H:
- $dH(\xi) = \omega(X_H, \xi)$, i.e., X_H is the "symplectic gradient."
- $\frac{\partial}{\partial t} f_t = X_H$ is the Hamiltonian flow of H. Maps f_t are Hamiltonian symplectomorphisms of (M, ω) .
- ▶ $Ham(M, \omega)$ is the group of Hamiltonian symplectomorphisms. If *M* is a surface, $Ham(M, \omega) \subset Diff(M, \omega)$.

- ω is a symplectic form on a manifold M (a closed, nondegenerate 2-form, e.g., area form on a surface).
 H = H_t : M → ℝ is a time-dependent smooth function. X_H is the Hamiltonian vector field of H:
- $dH(\xi) = \omega(X_H, \xi)$, i.e., X_H is the "symplectic gradient."
- $\frac{\partial}{\partial t} f_t = X_H$ is the Hamiltonian flow of H. Maps f_t are Hamiltonian symplectomorphisms of (M, ω) .
- ▶ $Ham(M, \omega)$ is the group of Hamiltonian symplectomorphisms. If *M* is a surface, $Ham(M, \omega) \subset Diff(M, \omega)$.

Note: If M is a surface, then, as a group, Ham(M,ω) is independent of ω (Mozer); thus, Ham(M,ω) = Ham(M).

 Warning: Our convention is opposite to the standard (but is consistent with Dynkin diagrams).

- Warning: Our convention is opposite to the standard (but is consistent with Dynkin diagrams).
- Γ is a finite graph (1-dimensional simplicial complex), V(Γ) is the vertex set, E(Γ) is the edge set.

- Warning: Our convention is opposite to the standard (but is consistent with Dynkin diagrams).
- ▶ Γ is a finite graph (1-dimensional simplicial complex), V(Γ) is the vertex set, E(Γ) is the edge set.

► Right-Angled Artin Group (RAAG) $G_{\Gamma} = \langle g_{v}, v \in V(\Gamma) | [g_{v}, g_{w}] = 1, [v, w] \notin E(\Gamma) \rangle.$

- Warning: Our convention is opposite to the standard (but is consistent with Dynkin diagrams).
- ▶ Γ is a finite graph (1-dimensional simplicial complex), V(Γ) is the vertex set, E(Γ) is the edge set.

- ► Right-Angled Artin Group (RAAG) $G_{\Gamma} = \langle g_{\nu}, \nu \in V(\Gamma) | [g_{\nu}, g_{w}] = 1, [\nu, w] \notin E(\Gamma) \rangle.$
- Examples: Free groups, free abelian groups,...

- Warning: Our convention is opposite to the standard (but is consistent with Dynkin diagrams).
- ▶ Γ is a finite graph (1-dimensional simplicial complex), V(Γ) is the vertex set, E(Γ) is the edge set.
- ► Right-Angled Artin Group (RAAG) $G_{\Gamma} = \langle g_{\nu}, \nu \in V(\Gamma) | [g_{\nu}, g_{w}] = 1, [\nu, w] \notin E(\Gamma) \rangle.$
- Examples: Free groups, free abelian groups,...
- Theorem (Bergeron, Haglind, Wise): If Γ is an arithmetic lattice in O(n, 1) of the simplest type then a finite-index subgroup in Γ embeds in some RAAG.

▶ Main Theorem. Every RAAG embeds in every Ham: For every symplectic manifold (M, ω) and every RAAG G_{Γ} , there exists an embedding $G_{\Gamma} \hookrightarrow Ham(M, \omega)$.

- ▶ Main Theorem. Every RAAG embeds in every Ham: For every symplectic manifold (M, ω) and every RAAG G_{Γ} , there exists an embedding $G_{\Gamma} \hookrightarrow Ham(M, \omega)$.
- **Corollary.** For every *n* there exist finite volume hyperbolic *n*-manifolds *N* (compact and not) so that $\pi_1(N)$ embeds in every *Ham*.

- ▶ Main Theorem. Every RAAG embeds in every Ham: For every symplectic manifold (M, ω) and every RAAG G_{Γ} , there exists an embedding $G_{\Gamma} \hookrightarrow Ham(M, \omega)$.
- Corollary. For every n there exist finite volume hyperbolic n-manifolds N (compact and not) so that π₁(N) embeds in every Ham.

• The most difficult case is $M = S^2$.

Step 1. Embed given G = G_Γ in Ham(M) for some surface M of genus depending on Γ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Step 1. Embed given G = G_Γ in Ham(M) for some surface M of genus depending on Γ.
- Step 2. Lift the action of G to the universal cover of M (hyperbolic plane ℍ²). The (faithful) action of G extends (topologically) to the rest of S² by the identity.

- Step 1. Embed given G = G_Γ in Ham(M) for some surface M of genus depending on Γ.
- Step 2. Lift the action of G to the universal cover of M (hyperbolic plane ℍ²). The (faithful) action of G extends (topologically) to the rest of S² by the identity.

- Step 1. Embed given G = G_Γ in Ham(M) for some surface M of genus depending on Γ.
- Step 2. Lift the action of G to the universal cover of M (hyperbolic plane ℍ²). The (faithful) action of G extends (topologically) to the rest of S² by the identity.
- ▶ Replace the hyperbolic area form with spherical, modify the action of G so that it extends to a Lipschitz, faithful, area-preserving action on S². The action fixes the exterior of H².

Step 3. Smooth out the action preserving faithfulness.

• Embed the graph Γ in M for some surface M of genus $\neq 1$.

- Embed the graph Γ in M for some surface M of genus $\neq 1$.
- Thicken Γ ⊂ M: Replace each vertex v by a domain D_v so that the nerve of the collection {D_v} is Γ.

- Embed the graph Γ in M for some surface M of genus $\neq 1$.
- Thicken Γ ⊂ M: Replace each vertex v by a domain D_v so that the nerve of the collection {D_v} is Γ.
- ▶ Pick functions H_v supported on D_v and let f_v be the time-1 maps of the associated Hamiltonian flows. Then each f_v is also supported in D_v .

- Embed the graph Γ in M for some surface M of genus $\neq 1$.
- Thicken Γ ⊂ M: Replace each vertex v by a domain D_v so that the nerve of the collection {D_v} is Γ.
- ▶ Pick functions H_v supported on D_v and let f_v be the time-1 maps of the associated Hamiltonian flows. Then each f_v is also supported in D_v .
- Since $D_v \cap D_w = \emptyset$ whenever $[v, w] \notin E(\Gamma)$, $[f_v, f_w] = 1$ and we get a homomorphism $G_{\Gamma} \to Ham(M)$,

- Embed the graph Γ in M for some surface M of genus $\neq 1$.
- Thicken Γ ⊂ M: Replace each vertex v by a domain D_v so that the nerve of the collection {D_v} is Γ.
- Pick functions H_v supported on D_v and let f_v be the time-1 maps of the associated Hamiltonian flows. Then each f_v is also supported in D_v.
- ► Since $D_v \cap D_w = \emptyset$ whenever $[v, w] \notin E(\Gamma)$, $[f_v, f_w] = 1$ and we get a homomorphism $G_{\Gamma} \to Ham(M)$,

• given by $\rho(g_v) = f_v$.

- Embed the graph Γ in M for some surface M of genus $\neq 1$.
- Thicken Γ ⊂ M: Replace each vertex v by a domain D_v so that the nerve of the collection {D_v} is Γ.
- ▶ Pick functions H_v supported on D_v and let f_v be the time-1 maps of the associated Hamiltonian flows. Then each f_v is also supported in D_v .
- ► Since $D_v \cap D_w = \emptyset$ whenever $[v, w] \notin E(\Gamma)$, $[f_v, f_w] = 1$ and we get a homomorphism $G_{\Gamma} \to Ham(M)$,
- given by $\rho(g_v) = f_v$.
- Such ρ is probably faithful for "generic" functions H_ν, but I do not know how to prove it!

▶ Instead of "generic" H_v 's we will use non-generic ones.

- ▶ Instead of "generic" H_v 's we will use non-generic ones.
- ► Take D_v = A(v) to be homotopically trivial annuli in M which intersect in pairs of squares.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Instead of "generic" H_v 's we will use non-generic ones.
- Take $D_v = A(v)$ to be homotopically trivial annuli in M which intersect in pairs of squares.

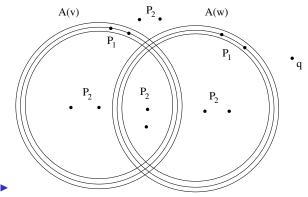


Figure: Points p_i , q are punctures to be removed from the surface.

On each annulus A(v) = S¹ × [−1, 1] take H_v to be a height function h(τ) so that h'(0) = 2π, h vanishes at −1, 1 with all its derivaives.

- On each annulus A(v) = S¹ × [−1, 1] take H_v to be a height function h(τ) so that h'(0) = 2π, h vanishes at −1, 1 with all its derivaives.
- ► Then the time-1 Hamiltonian map f is a "double Dehn twist" or "point-pushing map" rotating the circle $S^1 \times 0$ by 2π .

- On each annulus A(v) = S¹ × [−1, 1] take H_v to be a height function h(τ) so that h'(0) = 2π, h vanishes at −1, 1 with all its derivaives.
- Then the time-1 Hamiltonian map f is a "double Dehn twist" or "point-pushing map" rotating the circle S¹ × 0 by 2π.

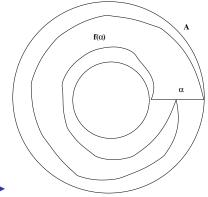


Figure: Point-pushing map (up to C^0 relative isotopy).

End of Step 1

► Then the maps f_v fix middle circles of the annuli A(v) (and points outside the annuli) and, hence, induce elements of the mapping class group Map(M') of the punctured surface M' = M - {p_i, q}.

- ► Then the maps f_v fix middle circles of the annuli A(v) (and points outside the annuli) and, hence, induce elements of the mapping class group Map(M') of the punctured surface M' = M {p_i, q}.
- I'd like to claim that the homomorphism G_Γ → Map(M') is
 1-1. But this is still unclear. Nevertheless

- ► Then the maps f_v fix middle circles of the annuli A(v) (and points outside the annuli) and, hence, induce elements of the mapping class group Map(M') of the punctured surface M' = M {p_i, q}.
- I'd like to claim that the homomorphism G_Γ → Map(M') is
 1-1. But this is still unclear. Nevertheless
- (Corollary of) a Theorem by Funar (c.f. Koberda; Clay, Leininger and Mangahas) is that if we use for f_v time-2 Hamiltonian maps, then $\rho: G_{\Gamma} \to Map(M')$ is 1-1.

- ► Then the maps f_v fix middle circles of the annuli A(v) (and points outside the annuli) and, hence, induce elements of the mapping class group Map(M') of the punctured surface M' = M {p_i, q}.
- I'd like to claim that the homomorphism G_Γ → Map(M') is
 1-1. But this is still unclear. Nevertheless
- (Corollary of) a Theorem by Funar (c.f. Koberda; Clay, Leininger and Mangahas) is that if we use for f_v time-2 Hamiltonian maps, then $\rho: G_{\Gamma} \to Map(M')$ is 1-1.

• This does the job if M is S^2 .

- ► Then the maps f_v fix middle circles of the annuli A(v) (and points outside the annuli) and, hence, induce elements of the mapping class group Map(M') of the punctured surface M' = M {p_i, q}.
- I'd like to claim that the homomorphism G_Γ → Map(M') is
 1-1. But this is still unclear. Nevertheless
- (Corollary of) a Theorem by Funar (c.f. Koberda; Clay, Leininger and Mangahas) is that if we use for f_v time-2 Hamiltonian maps, then $\rho: G_{\Gamma} \to Map(M')$ is 1-1.

- This does the job if M is S^2 .
- But Γ need not be planar.

- ► Then the maps f_v fix middle circles of the annuli A(v) (and points outside the annuli) and, hence, induce elements of the mapping class group Map(M') of the punctured surface M' = M {p_i, q}.
- I'd like to claim that the homomorphism G_Γ → Map(M') is
 1-1. But this is still unclear. Nevertheless
- (Corollary of) a Theorem by Funar (c.f. Koberda; Clay, Leininger and Mangahas) is that if we use for f_v time-2 Hamiltonian maps, then $\rho: G_{\Gamma} \to Map(M')$ is 1-1.
- This does the job if M is S^2 .
- But Γ need not be planar.
- One can show (with a bit of trickery) that if Γ admits a finite planar orbi-cover Λ → Γ then G_Γ → G_Λ and we are again OK.

• Of course, the universal cover of every graph is planar.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Of course, the universal cover of every graph is planar.
- Let unit disk D = ℍ² → M be the universal cover (recall that χ(M) ≠ 0). Use this cover to lift each f_v to a product of infinitely many commuting twists.

- Of course, the universal cover of every graph is planar.
- Let unit disk D = ℍ² → M be the universal cover (recall that χ(M) ≠ 0). Use this cover to lift each f_v to a product of infinitely many commuting twists.
- ▶ We get a (faithful) representation $\tilde{\rho} : G_{\Gamma} \to Ham(\mathbb{H}^2)$ (with hyperbolic area form). Moreover, if D' is the infinitely punctured disk covering M' then $G = G_{\Gamma} \to Map(D')$ is still 1-1.

- Of course, the universal cover of every graph is planar.
- Let unit disk D = ℍ² → M be the universal cover (recall that χ(M) ≠ 0). Use this cover to lift each f_v to a product of infinitely many commuting twists.
- ▶ We get a (faithful) representation $\tilde{\rho} : G_{\Gamma} \to Ham(\mathbb{H}^2)$ (with hyperbolic area form). Moreover, if D' is the infinitely punctured disk covering M' then $G = G_{\Gamma} \to Map(D')$ is still 1-1.
- Since all elements of ρ(G) are homotopically trivial, ρ̃(G) extends by the identity to the rest of S².

- Of course, the universal cover of every graph is planar.
- Let unit disk D = ℍ² → M be the universal cover (recall that χ(M) ≠ 0). Use this cover to lift each f_v to a product of infinitely many commuting twists.
- ▶ We get a (faithful) representation $\tilde{\rho} : G_{\Gamma} \to Ham(\mathbb{H}^2)$ (with hyperbolic area form). Moreover, if D' is the infinitely punctured disk covering M' then $G = G_{\Gamma} \to Map(D')$ is still 1-1.
- Since all elements of ρ(G) are homotopically trivial, ρ̃(G) extends by the identity to the rest of S².

Problem: 1) The extension is only Holder; 2) more importantly, ρ̃(G) preserves wrong area form.

- Of course, the universal cover of every graph is planar.
- Let unit disk D = ℍ² → M be the universal cover (recall that χ(M) ≠ 0). Use this cover to lift each f_v to a product of infinitely many commuting twists.
- ▶ We get a (faithful) representation $\tilde{\rho} : G_{\Gamma} \to Ham(\mathbb{H}^2)$ (with hyperbolic area form). Moreover, if D' is the infinitely punctured disk covering M' then $G = G_{\Gamma} \to Map(D')$ is still 1-1.
- Since all elements of ρ(G) are homotopically trivial, ρ̃(G) extends by the identity to the rest of S².

- Problem: 1) The extension is only Holder; 2) more importantly, ρ̃(G) preserves wrong area form.
- Let ω_0 be the spherical area form on S^2 .

- Of course, the universal cover of every graph is planar.
- Let unit disk D = ℍ² → M be the universal cover (recall that χ(M) ≠ 0). Use this cover to lift each f_v to a product of infinitely many commuting twists.
- ▶ We get a (faithful) representation $\tilde{\rho} : G_{\Gamma} \to Ham(\mathbb{H}^2)$ (with hyperbolic area form). Moreover, if D' is the infinitely punctured disk covering M' then $G = G_{\Gamma} \to Map(D')$ is still 1-1.
- Since all elements of ρ(G) are homotopically trivial, ρ̃(G) extends by the identity to the rest of S².
- Problem: 1) The extension is only Holder; 2) more importantly, ρ̃(G) preserves wrong area form.
- Let ω_0 be the spherical area form on S^2 .
- We can lift functions H_ν to D and try to use ω₀ to define new time-2 Hamiltonian maps using these functions. The resulting maps preserve ω₀ on D, but ...

• ... The lifted functions \tilde{H}_{ν} do not extend continuously by 0 to the unit circle...

- ... The lifted functions \tilde{H}_v do not extend continuously by 0 to the unit circle...
- ► Even worse, the new time-2 maps are not in the (relative) isotopy class of the lifts of the maps f_v (or may not even preserve D'), so we cannot be sure that the representation is 1-1.

- ... The lifted functions \tilde{H}_v do not extend continuously by 0 to the unit circle...
- ► Even worse, the new time-2 maps are not in the (relative) isotopy class of the lifts of the maps f_v (or may not even preserve D'), so we cannot be sure that the representation is 1-1.

• If
$$z \in D$$
, then $(1 - |z|)^2 \omega_{hyp}(z) \asymp \omega_0(z)$.

- The lifted functions H
 v do not extend continuously by 0 to the unit circle...
- ► Even worse, the new time-2 maps are not in the (relative) isotopy class of the lifts of the maps f_v (or may not even preserve D'), so we cannot be sure that the representation is 1-1.
- If $z \in D$, then $(1 |z|)^2 \omega_{hyp}(z) \asymp \omega_0(z)$.
- Hence, the Hamiltonian vector field (with respect to ω₀) of *H̃_v* at z is about (1 − |z|)⁻²× what we need for a double Dehn twist.

- The lifted functions H
 v do not extend continuously by 0 to the unit circle...
- ► Even worse, the new time-2 maps are not in the (relative) isotopy class of the lifts of the maps f_v (or may not even preserve D'), so we cannot be sure that the representation is 1-1.
- If $z \in D$, then $(1 |z|)^2 \omega_{hyp}(z) \asymp \omega_0(z)$.
- Hence, the Hamiltonian vector field (with respect to ω₀) of *H̃*_v at z is about (1 − |z|)⁻²× what we need for a double Dehn twist.

► Thus, we have to replace \tilde{H}_{ν} with new functions $\hat{H}_{\nu}(z) \asymp (1 - |z|)^2 \tilde{H}_{\nu}(z)$, so that

- The lifted functions H
 v do not extend continuously by 0 to the unit circle...
- ► Even worse, the new time-2 maps are not in the (relative) isotopy class of the lifts of the maps f_v (or may not even preserve D'), so we cannot be sure that the representation is 1-1.
- If $z \in D$, then $(1 |z|)^2 \omega_{hyp}(z) \asymp \omega_0(z)$.
- Hence, the Hamiltonian vector field (with respect to ω₀) of *H̃*_v at z is about (1 − |z|)⁻²× what we need for a double Dehn twist.
- ► Thus, we have to replace \tilde{H}_{ν} with new functions $\hat{H}_{\nu}(z) \asymp (1 |z|)^2 \tilde{H}_{\nu}(z)$, so that
- ► the resulting time-1 maps (with respect to ω₀) are double Dehn twists.

We then get a new representation ρ̂: G → Ham(D) which preserves D' and, moreover, has the same projection to Map(D') as ρ̃.

We then get a new representation ρ̂: G → Ham(D) which preserves D' and, moreover, has the same projection to Map(D') as ρ̃.

ln particular: $\hat{\rho}$ is 1-1.

We then get a new representation ρ̂: G → Ham(D) which preserves D' and, moreover, has the same projection to Map(D') as ρ̃.

- ln particular: $\hat{\rho}$ is 1-1.
- Now, there are good news and bad news.

- We then get a new representation ρ̂: G → Ham(D) which preserves D' and, moreover, has the same projection to Map(D') as ρ̃.
- ln particular: $\hat{\rho}$ is 1-1.
- Now, there are good news and bad news.
- Good: The new functions \hat{H}_v admit $C^{1,1}$ extension by 0 from D to the rest of S^2 .

- We then get a new representation ρ̂: G → Ham(D) which preserves D' and, moreover, has the same projection to Map(D') as ρ̃.
- ln particular: $\hat{\rho}$ is 1-1.
- Now, there are good news and bad news.
- Good: The new functions \hat{H}_v admit $C^{1,1}$ extension by 0 from D to the rest of S^2 .
- In particular, the action of the group
 <sup>
 ρ</sup>(G) on D extends to a Lipschitz action on S² (by the identity).

- We then get a new representation $\hat{\rho} : G \to Ham(D)$ which preserves D' and, moreover, has the same projection to Map(D') as $\tilde{\rho}$.
- ln particular: $\hat{\rho}$ is 1-1.
- Now, there are good news and bad news.
- Good: The new functions \hat{H}_{v} admit $C^{1,1}$ extension by 0 from D to the rest of S^{2} .
- Bad: The 2-nd and higher derivatives of H
 v blow up on the boundary of D, while the 1st derivatives are only bounded, so we do not even get a C¹-action on S².

- We then get a new representation $\hat{\rho} : G \to Ham(D)$ which preserves D' and, moreover, has the same projection to Map(D') as $\tilde{\rho}$.
- ln particular: $\hat{\rho}$ is 1-1.
- Now, there are good news and bad news.
- Good: The new functions \hat{H}_{v} admit $C^{1,1}$ extension by 0 from D to the rest of S^{2} .
- Bad: The 2-nd and higher derivatives of H
 v blow up on the boundary of D, while the 1st derivatives are only bounded, so we do not even get a C¹-action on S².
- ▶ Good: The blow-up is only polynomial in *z*.

► The idea is to smooth out the action ô of G on S² preserving faithfulness.

- ► The idea is to smooth out the action $\hat{\rho}$ of *G* on S^2 preserving faithfulness.
- Let η_ε(z), ε ∈ (0, 1] be a real-analytic family of bump-functions ("mollifiers") on D which vanish (exponentially fast with derivatives of all orders) on the boundary circle, so that η_ε → η₀ = 1 (uniformly on compacts in D).

- ► The idea is to smooth out the action $\hat{\rho}$ of *G* on S^2 preserving faithfulness.
- Let η_ε(z), ε ∈ (0, 1] be a real-analytic family of bump-functions ("mollifiers") on D which vanish (exponentially fast with derivatives of all orders) on the boundary circle, so that η_ε → η₀ = 1 (uniformly on compacts in D).

Then, replace each H
_ν with η_εH
_ν. Now, these functions extends to C[∞] on S² for ε > 0.

- ► The idea is to smooth out the action $\hat{\rho}$ of *G* on S^2 preserving faithfulness.
- Let η_ε(z), ε ∈ (0, 1] be a real-analytic family of bump-functions ("mollifiers") on D which vanish (exponentially fast with derivatives of all orders) on the boundary circle, so that η_ε → η₀ = 1 (uniformly on compacts in D).
- ► Then, replace each H
 _ν with η_εH
 _ν. Now, these functions extends to C[∞] on S² for ε > 0.
- Obtain new (C^{∞}) time-2 maps $\hat{f}_{v,\epsilon}$ using the functions $\eta_{\epsilon}\hat{H}_{v}$.

- ► The idea is to smooth out the action $\hat{\rho}$ of *G* on S^2 preserving faithfulness.
- Let η_ε(z), ε ∈ (0, 1] be a real-analytic family of bump-functions ("mollifiers") on D which vanish (exponentially fast with derivatives of all orders) on the boundary circle, so that η_ε → η₀ = 1 (uniformly on compacts in D).
- Then, replace each H
 _ν with η_εH
 _ν. Now, these functions extends to C[∞] on S² for ε > 0.
- Obtain new (C^{∞}) time-2 maps $\hat{f}_{\nu,\epsilon}$ using the functions $\eta_{\epsilon}\hat{H}_{\nu}$.

• The result is again a family of representations $\hat{\rho}_{\epsilon}: G \to Ham(S^2), g_{\nu} \mapsto \hat{f}_{\nu,\epsilon}.$

- ► The idea is to smooth out the action ô of G on S² preserving faithfulness.
- Let η_ε(z), ε ∈ (0, 1] be a real-analytic family of bump-functions ("mollifiers") on D which vanish (exponentially fast with derivatives of all orders) on the boundary circle, so that η_ε → η₀ = 1 (uniformly on compacts in D).
- Then, replace each H
 _ν with η_εH
 _ν. Now, these functions extends to C[∞] on S² for ε > 0.
- Obtain new (C^{∞}) time-2 maps $\hat{f}_{\nu,\epsilon}$ using the functions $\eta_{\epsilon}\hat{H}_{\nu}$.
- The result is again a family of representations $\hat{\rho}_{\epsilon}: G \to Ham(S^2), g_{\nu} \mapsto \hat{f}_{\nu,\epsilon}.$
- Why would these $\hat{\rho}_{\epsilon}$ be faithful for small ϵ ?

- ► The idea is to smooth out the action $\hat{\rho}$ of *G* on S^2 preserving faithfulness.
- Let η_ε(z), ε ∈ (0, 1] be a real-analytic family of bump-functions ("mollifiers") on D which vanish (exponentially fast with derivatives of all orders) on the boundary circle, so that η_ε → η₀ = 1 (uniformly on compacts in D).
- Then, replace each H
 _ν with η_εH
 _ν. Now, these functions extends to C[∞] on S² for ε > 0.
- Obtain new (C^{∞}) time-2 maps $\hat{f}_{\nu,\epsilon}$ using the functions $\eta_{\epsilon}\hat{H}_{\nu}$.
- The result is again a family of representations $\hat{\rho}_{\epsilon}: G \to Ham(S^2), g_{\nu} \mapsto \hat{f}_{\nu,\epsilon}.$
- Why would these $\hat{\rho}_{\epsilon}$ be faithful for small ϵ ?
- I have no idea...

• The point however, is that $\hat{f}_{v,\epsilon}|_D$ depends real-analytically on ϵ for $\epsilon > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ The point however, is that $\hat{f}_{v,\epsilon}|_D$ depends real-analytically on ϵ for $\epsilon > 0$.
- ► Therefore, for each g ∈ G − 1 the set E_g := {ε : ρ̂_ε(g) = 1} is either at most countable or E_g = [0, 1].

- ▶ The point however, is that $\hat{f}_{v,\epsilon}|_D$ depends real-analytically on ϵ for $\epsilon > 0$.
- ► Therefore, for each g ∈ G − 1 the set E_g := {ε : ρ̂_ε(g) = 1} is either at most countable or E_g = [0, 1].

• But the latter is impossible since $\hat{\rho} = \hat{\rho}_0$ is faithful.

- ▶ The point however, is that $\hat{f}_{v,\epsilon}|_D$ depends real-analytically on ϵ for $\epsilon > 0$.
- ► Therefore, for each g ∈ G − 1 the set E_g := {ε : ρ̂_ε(g) = 1} is either at most countable or E_g = [0, 1].

- But the latter is impossible since $\hat{\rho} = \hat{\rho}_0$ is faithful.
- Since G is countable, for generic ϵ , $\hat{\rho}_{\epsilon}$ is faithful.

Step 3: Cntd

- ▶ The point however, is that $\hat{f}_{v,\epsilon}|_D$ depends real-analytically on ϵ for $\epsilon > 0$.
- ► Therefore, for each g ∈ G − 1 the set E_g := {ε : ρ̂_ε(g) = 1} is either at most countable or E_g = [0, 1].
- But the latter is impossible since $\hat{\rho} = \hat{\rho}_0$ is faithful.
- Since G is countable, for generic ϵ , $\hat{\rho}_{\epsilon}$ is faithful.
- I do not know what happens for non-generic €, even those close to 0.

► Hence, we obtain embeddings G → Ham(S²) which are supported in D.

- ► Hence, we obtain embeddings G
 → Ham(S²) which are supported in D.
- Therefore, we can promote these embeddings to embeddings G → Ham(M) for any surface M (by identity outside of a small disk D ⊂ M).

- ► Hence, we obtain embeddings G
 → Ham(S²) which are supported in D.
- Therefore, we can promote these embeddings to embeddings G → Ham(M) for any surface M (by identity outside of a small disk D ⊂ M).

• Let *M* have dimension 2n. Consider a small polydisk $D^n = B^{2n} \subset M$.

- ► Hence, we obtain embeddings G
 → Ham(S²) which are supported in D.
- Therefore, we can promote these embeddings to embeddings G → Ham(M) for any surface M (by identity outside of a small disk D ⊂ M).
- ► Let *M* have dimension 2*n*. Consider a small polydisk $D^n = B^{2n} \subset M$.
- Extend the faithful Hamiltonian action $G_{\Gamma} \frown D$ diagonally to D^n .

- ► Hence, we obtain embeddings G
 → Ham(S²) which are supported in D.
- Therefore, we can promote these embeddings to embeddings G → Ham(M) for any surface M (by identity outside of a small disk D ⊂ M).
- Let *M* have dimension 2n. Consider a small polydisk $D^n = B^{2n} \subset M$.
- Extend the faithful Hamiltonian action $G_{\Gamma} \frown D$ diagonally to D^n .
- Then extend the diagonal action by the identity to the rest of *M*.

• Question 1. Can one improve the main theorem to an embedding $G_{\Gamma} \hookrightarrow Diff(S^1)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Question 1. Can one improve the main theorem to an embedding $G_{\Gamma} \hookrightarrow Diff(S^1)$?
- ► For example: Take Λ which is a connected linear graph on *n* vertices. Is it true that for every finite graph Γ there exists an embedding $G_{\Gamma} \rightarrow G_{\Lambda}$?

- Question 1. Can one improve the main theorem to an embedding $G_{\Gamma} \hookrightarrow Diff(S^1)$?
- ► For example: Take Λ which is a connected linear graph on *n* vertices. Is it true that for every finite graph Γ there exists an embedding $G_{\Gamma} \rightarrow G_{\Lambda}$?
- If this is the case, then, since Λ embeds in S¹, G_Λ → Diff(S¹), so we should also get an embedding G_Γ → Diff(S¹).

Question 2. Do non-right angled Artin groups embed in Diff(S², ω)?

(ロ)、(型)、(E)、(E)、 E) の(の)

Question 2. Do non-right angled Artin groups embed in Diff (S², ω)?

Unclear even for the braid groups.

- Question 2. Do non-right angled Artin groups embed in Diff (S², ω)?
- Unclear even for the braid groups.
- Question 3. Suppose that Λ is a uniform lattice in SU(2,1). Can Λ embed in some RAAG?

- Question 2. Do non-right angled Artin groups embed in Diff (S², ω)?
- Unclear even for the braid groups.
- Question 3. Suppose that Λ is a uniform lattice in SU(2,1). Can Λ embed in some RAAG?

Not a single example is known.

- Question 2. Do non-right angled Artin groups embed in Diff (S², ω)?
- Unclear even for the braid groups.
- Question 3. Suppose that Λ is a uniform lattice in SU(2,1). Can Λ embed in some RAAG?
- Not a single example is known.
- ► Note: All RAAGs are locally indicable (every f.g. subgroup has infinite abelianization). On the other hand, there are uniform lattices in SU(2, 1) which are not known to have virtually positive b₁.