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1. Simplicial volume

I Let X be a space, and c =
∑k

i=1 aiσi , ai ∈ R, a singular real
chain. Define the `1-norm by ||c ||1 =

∑
i |ai |.

For ω ∈ H∗(X ;R), the simplicial norm is defined by

||ω|| = inf{||z ||1 | ∂z = 0, [z ] = ω}.

This is a semi-norm.

I If M is a closed oriented n-manifold, the simplicial volume is
defined by

||M|| = ||[M]||,

where [M] is the fundamental class. If M is non-orientable,
define ||M|| = ||M ′||/2 for the double cover M ′.



2. Motivation – minimal volume
Let M be a closed manifold.
Want to find an extremal Riemannian metric g on M, e.g.,
vol(M, g) is smallest with |Kg | ≤ 1.
vol(cM)→ 0 as c → 0, but K →∞ unless K = 0.
Gromov defined the minimal volume of M by

Minvol(M) = inf
|Kg |≤1

vol(M, g) ≥ 0

Question When is Minvol M > 0 ? Is Minvol M attained ? What is
an extremal metric ?

Example

If dim M = 2, then by Gauss-Bonnet thm, for any metric g ,∫
M

Kdv = 2πχ(M)

It follows |2πχ(M)| ≤
∫
M 1dv = vol M if |K | ≤ 1, therefore

Minvol M = 2π|χ(M)|, and extremal metrics satisfy K = −1 if
χ(M) < 0.



3. Lower bound of MinvolM

Theorem (Gromov)

For an n-manifold M,

Cn||M|| ≤ Minvol(M),

where Cn > 0 is a constant which depends only on the dimension n.

I Question: When ||M|| > 0

I For a continuous map f : Mn → Nn,

||M|| ≥ |deg(f )|||N||

Therefore if there is f : M → M with deg(f ) 6= 0,±1, then
||M|| = 0. For example, ||Sn|| = 0, ||T n|| = 0.



4. K < 0 implies ||M || > 0

By “straightening” of a simplex,

Theorem (Gromov-Thurston)

If Mn is a closed R-manifold with K ≤ −1, then

vol M ≤ cn||M||,

where cn is a constant which depends only on the dimension n.
In particular 0 < ||M||.
Moreover, if K = −1, then vol M = Tn||M||, where 0 < Tn <∞ is
the sup of the volume of a geodesic n-simplex in Hn.

I Combined with the previous thm, if K = −1, then
Cn vol M/Tn ≤ Minvol M.

I By now, for a closed hyperbolic manifold M, we know
Minvol M = vol(M) and the extremal metric is hyperbolic
(Besson-Courtois-Gallot).



5. Dehn filling
Let M be a non-compact hyperbolic 3-manifold of finite volume.
M has finitely many cusps. For simplicity, let’s assume it has only
one cusp, C = T 2 × [0,∞).
Let α ⊂ T 2 be a simple (geodesic) loop. We remove C from M
and glue a solid torus along T 2 to kill [α] ∈ π1(T ) ' Z2. We get a
closed manifold M(α). This is Dehn filling.



6. Hyperbolic Dehn filling, 2π-theorem

Theorem (Thurston)

M(α) has a hyperbolic structure except for finitely many α (in
terms of π1(α)).
If M(α) is hyperbolic, then vol M(α) < vol M.

Thurston deforms the representation π1(M)→ PSL(2,C) such
that the image of [α] = 1, and obtain a representation
π1(M(α))→ PSL(2,C).

Theorem (Gromov, 2π-theorem)

M(α) has a Riemannian metric of negative curvature if `(α) > 2π.

Gromov extends the hyperbolic metric on M\C to the solid torus
S , and obtain a metric of negative curvature on M(α).
For each M, there are infinitely many π1(M(α)). They
approximate M, therefore the diameter →∞ although the volume
is bounded from above and the sectional curvature is pinched
between −1 and −a2 for some a > 0.



7. Filling in dim ≥ 4
Assume d = dim ≥ 4. Let M be a hyperbolic d-manifold of finite
volume with toral cusps (let’s assume only one cusp)
C = T n−1 × [0,∞). Let An−2 ⊂ T be a flat subtorus.
Topologically T = S1 × A.
Let C (A) be the cone over A. We define a partial cone by

C (T ,A) = C (A)× S1

Remove C from M and glue C (T ,A), and obtain M(A), Dehn

filling.



I The Dehn-filling M(A) is not a manifold, only a
pseudo-manifold. The singular set is S1 (the cone points).

I For 1 ≤ dim A < d − 2, we can also define the partial cone
C (T ,A), and the Dehn filling M(A) similarly. The singular set
is T d−1−dimA.

I The pair (π1(M\C ), π1(T )) is relatively hyperbolic. In M(A),
we kill Zn−2 ' π1(A) < π1(T ) ' Zn−1, therefore π1(M(A))
has a chance to be word-hyperbolic (cf. Grove-Manning-Osin).



8. CAT(-1) filling
We generalize 2π-theorem.

Theorem (Manning-F)

If a shortest non-trivial loop on A has length > 2π, then we can
put a metric on M(A) which is locally CAT(-1).

I We use warped metrics following Gromov. The metric is
Riemannian except for the singular set.

I π1(M(A)) is word-hyperbolic, and we obtain a family of
interesting examples: torsion-free, dim G = dim M, not
Poincare duality groups.

I If T satisfies the 2π-condition, one can cone off T and put
locally CAT(-1) metric on M(T )(Mosher-Sageev).

I Even if T is small (i.e. does not satisfy the 2π-condition) , we
can always find A which satisfies the 2π condition.

I If dim A < dim M − 2, we can still put a locally CAT(0) metric
on M(A) (cf. Schroeder when M(A) is a manifold, i.e.
dim A = 1)



9. Upper bound on ||M(A)||

I M(A) is not a manifold, and there is no canonical metric for
vol M(A), but we can define ||M(A)|| for a pseudo-manifold
by ||[M(A)]||.

I Remember that in dim = 3, vol M(α) < vol M, therefore
||M(α)|| < ||M||.

Theorem (Manning-F)

Let M be a hyperbolic d-manifold of finite volume with toral
cusps, d ≥ 3. If Ad−2 ⊂ T d−1 ⊂ Md satisfies 2π-condition, then

||M(A)|| ≤ ||M||

We don’t know if ||M(A)|| < ||M||.



10. Questions on finiteness

Our theorem raises a question. Define for d ,V ,

C (d ,V ) = {π1(M) | M : a closed Riem.mfd ,

dim = d , ||M|| ≤ V , (−1 ≤)K < 0}

Question: ]C (d ,V ) =∞ ?

I Finite if d = 2. ||M|| grows linearly on the genus.

I If d = 3, then ∞ by hyperbolic Dehn fillings.
vol M(α) < vol M.

I Unknown if d ≥ 4.
I If we replace ||M|| ≤ V by vol M ≤ V , then finite; since it

follows diam(M) ≤ C (V ) by Gromov, then a finiteness thm by
Cheeger applies to M.

I Or, if we additionally assume −1 ≤ K ≤ −a2 < 0 (pinching),
and define a subclass C (d ,V , a), then finite; since we then
have vol M ≤ V1(V , d , a) from ||M|| ≤ V .



I If we allow pseudo-manifolds with locally CAT(-1) metrics,
then ∞ by our theorem for all d ≥ 4, since M(A) is locally
CAT(-1) and ||M(A)|| ≤ ||M|| for all A.

I Approach to C (d ,V ):
I To show finiteness by contradiction, let Mi be a sequence, and

let it converge to M∞, then analyze M∞.
Don’t know how to use ||Mi || ≤ V .

I If we expect ∞, since pinching −1 ≤ K ≤ −a2 < 0 gives
finiteness, we need a sequence of manifolds Mi of negative
curvature which does not allow pinching.
Only one example is known using “branch coverings”
(Gromov-Thurston), but in that example ||Mi || → ∞.
Need a new example to show ∞.




