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Fundamental groups of general 1-dimensional Peano
continua are notoriously difficult to analyze:

l1

l2

l3

Hawaiian Earring Sierpiński carpet

Menger curve
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Theorems [Eda 2002-2010]

Let X and Y be 1-dimensional Peano continua.

A. π1(Sierpiński carpet) /↪ π1(Hawaiian Earring),

π1(Menger curve) /↪ π1(Hawaiian Earring).

B. If X and Y are not locally simply-connected at any point and
if π1(X ) ≅ π1(Y ), then X and Y are homeomorphic.

C. If π1(X ) ≅ π1(Y ), then X and Y are homotopy equivalent.
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Theorems [Curtis-Fort 1959]

A. Suppose X is a 1-dimensional Peano continuum.
Then π1(X ) is free ⇔ X is (semi)locally simply-connected

⇔ π1(X ) is finitely presented
⇔ π1(X ) is countable

B. Suppose X is a 1-dimensional separable metric space.
Then every finitely generated subgroup of π1(X ) is free.

C. The homotopy class of every loop in a 1-dimensional separable
metric space has an essentially unique shortest representative.
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Question [Cannon-Conner 2006]

Given a 1-dimensional path-connected compact metric space X ,
is there a tree-like object that might be considered the topological
Cayley graph for π1(X )?

Solution

A combinatorial description of an R-tree
(i.e. a uniquely arcwise connected geodesic space),

along with a combinatorial description of π1(X ), which

to the extend possible, functions like a Cayley graph for π1(X )
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Functionality of a classical Cayley graph:

G = ⟨a,b ∣ a5 = e, b2 = e, ab = ba−1⟩

g h g−1h = aba−1b
g−1h = aa
g−1h = baaab

There is a natural distance based on word length: d(g ,h) = 2

G acts on the Cayley graph by graph automorphism

G acts freely and transitively on the vertex set
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The tame case:

X = 1-dimensional simplicial complex

e a

b

p

Collapsing all translates of a maximal tree in the universal covering
space yields a Cayley graph for the free fundamental group π1(X )
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Obstacles

In general, we are facing the following obstacles:

π1(X ) might be uncountable

There might not be a universal covering space

Collapsing contractible subsets of X might change π1(X )

π1( ) /≅ π1( )
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Theorem [Curtis-Fort ‘59, Eda-Kawamura ‘98]

Let X be a 1-dimensional separable metric space, or
let X be a 1-dimensional compact Hausdorff space.
Then the natural homomorphism ϕ ∶ π1(X )↪ π̌1(X ) is injective.

Suppose X = lim
←Ð

(X1
f1← X2

f2← X3
f3← ⋯) with finite graphs Xn.

(Example: If X is the boundary of a CAT(0) 2-complex, we can
take metric spheres for Xn and geodesic retraction for fn.)

Then π̌1(X ) = lim
←Ð

(π1(X1)
f1#← π1(X2)

f2#← π1(X3)
f3#← ⋯).

π̌1(X ) = coherent sequences of reduced words in free groups.

Problem: How do we identify the image of π1(X ) in π̌1(X )?
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Theorem [F-Zastrow 2007]

Suppose X is a path-connected topological space.
If the natural homomorphism ϕ ∶ π1(X )↪ π̌1(X ) is injective, then
there is a generalized universal covering p ∶ X̃ → X , that is, a
continuous surjection characterized by the usual lifting criterion:

X̃ = path-conn,
loc path-conn,
simply conn.

Y = path-conn,
loc path-conn.

(X̃ , x̃)
p

��

(Y , y)

∃!g
::

∀f // (X , x)

⇐⇒ f#(π1(Y , y)) = 1

π1(X ) ≅ Aut(X̃
p
→ X ) acts freely and transitively on p−1(x);

If X is 1-dimensional separable metric, then X̃ is an R-tree.
(There is no R-tree metric for which π1(X ) acts by isometry.)

Problem: How do we combinatorially describe X̃ ?
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General Assumption

Let X be a 1-dimensional path-connected compact metric space.

Express X = lim
←Ð

(X1
f1← X2

f2← X3
f3← ⋯) with finite graphs Xn.

Arrange that fn ∶ Xn+1 → X ∗

n maps each edge linearly onto an edge
of a regular subdivision X ∗

n of Xn and fix a base point (xn)n ∈ X .

Let Wn = {all words v1v2⋯vk over the vertex alphabet of Xn

which describe paths starting at the base vertex xn
}

Set of word sequences: W = lim
←Ð

(W1
φ1←ÐW2

φ2←ÐW3
φ3←Ð ⋯)

where φn ∶Wn+1 →Wn is the natural combinatorial projection.
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Example:
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ω2 = E F H I M Q T V U R L J

H G

ω1 = φ2(ω2) = ABCB

/A ω2=

A

F H

B

M Q

C

V

C

R L

B

Formally, we allow for words of the form “v1v2⋯vk/vk+1” in Wn,
unless this can eventually be avoided. (“0.999 . . . = 1.000 . . .”)
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Combinatorial Reduction:
Given a word ωn, repeatedly apply the following replacements

. . .uvu . . . ↝ . . .u . . .
. . .uv/u ↝ . . .u/v

until this is no longer possible. Denote the resulting word by ω′n.

Example: A

D E

B

C

A

D E

B

C

A

D E

B

C

A

D E

B

C

ωn = ABEDCDADEA

ωn =

ABED

CD

ADEA

ωn =

ABED

CDAD

EA

ωn =

ABE

DCDADE

A

ω′n = ABEA
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Let Ωn = {words in Wn that start and end at xn}.

Then Ω′

n ≅ π1(Xn) under gn ∗ hn = (gnhn)′ and

π̌1(X ) = lim
←Ð

(Ω′

1

φ′1←Ð Ω′

2

φ′2←Ð Ω′

3

φ′3←Ð ⋯) .

Recall the injective homomorphism ϕ ∶ π1(X )↪ π̌1(X ).

Proposition

An element of (gn)n ∈ π̌1(X ) is in G = ϕ(π1(X )) if and only if
(gn)n is locally eventually constant, i.e., iff for every n the
sequence (φn ○φn+1 ○⋯○φk−1(gk))k>n is eventually constant in Ωn.

For (gn)n ∈ G we define the stabilization
←ÐÐÐ
(gn)n = (ωn)n ∈W by

ωn = φn ○ φn+1 ○ ⋯ ○ φk−1(gk) for sufficiently large k .

H. Fischer, A. Zastrow Generalized Cayley graphs
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Example: An element which is not locally eventually constant.

l1 l1

l2
l3

l1

l2

g1 = const. ↤ g2 = l1l2l−1
1 l−1

2 ↤ g3 = l1l2l−1
1 l−1

2 l1l3l−1
1 l−1

3

(gn)n = (l1l2l−1
1 l−1

2 l1l3l−1
1 l−1

3 ⋯l1lnl−1
1 l−1

n )n /∈ G
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G = {(gn)n ∈ π̌1(X ) ∣ (gn)n is locally eventually constant}

←Ð
G = {(ωn)n ∈W ∣ (ωn)n =

←ÐÐÐ
(gn)n with (gn)n ∈ G}

Theorem 1
←Ð
G forms a group under (ωn)n ∗ (ξn)n =

←ÐÐÐÐ
(ωnξn)′n and

←Ð
G ≅ π1(X ).

This generalizes the description of π1(Sierpiński gasket) given by
[Akiyama-Dorfer-Thuswaldner-Winkler 2009].
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Dynamic word length:

We assign weights to the letters of (ωn)n ∈W recursively.

ω1
φ2↤ ω2

φ3↤ ω3
φ4↤ ⋯

Write ω1 = v1v2⋯vs/∗ (either ω1 = v1v2⋯vs or ω1 = v1v2⋯vs/vs+1).
We assign the following weights to the letters v1, v2, . . . , vs .

letter v1 v2 v3 ⋯ vs

weight 1/2 1/4 1/8 ⋯ 1/2s

(For words of the form v1v2⋯vs/vs+1, we assign no weight to vs+1.)

The weight scheme is then modeled on [Mayer-Overstegen 1990]:

H. Fischer, A. Zastrow Generalized Cayley graphs
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Suppose the letters of ωn = v1v2⋯vk/∗ have the following weights:

letter v1 v2 v3 ⋯ vk

weight a1 a2 a3 ⋯ ak

Assign weights to ωn+1 = u1u2⋯um/∗ by inductively cutting ωn+1

into maximal substrings with φn(uit+1uit+2⋯uit+1) = vt+1.

v1 v2 v3 ⋯ vk

u1

_
φn

OO

⋯ui1 ∣ ui1+1

_
φn

OO

⋯ui2 ∣ ui2+1

_
φn

OO

⋯ui3 ∣ ⋯∣ uik−1+1

_
φn

OO

⋯um

u1 u2 ⋯ ui1 ui1+1 ui1+2 ⋯ ui2 ui2+1 ui2+2 ⋯
a1/2 a1/4 ⋯ a1/2i1 a1/2i1

+a2/2 a2/4 ⋯ a2/2i2−i1 a2/2i2−i1

+a3/2 a3/4 ⋯

H. Fischer, A. Zastrow Generalized Cayley graphs
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For ωn = v1v2⋯vk/∗, we define

∣ωn∣ = weight(v1) +weight(v2) +⋯ +weight(vk)

For (ωn)n ∈W, we have ∣ω1∣ > ∣ω2∣ > ∣ω3∣ > ⋯ and define

∥(ωn)n∥ = lim
n→∞

∣ωn∣

H. Fischer, A. Zastrow Generalized Cayley graphs
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We let Γ be the set of all locally eventually constant elements of

lim
←Ð

(W ′

1

φ′1←ÐW ′

2

φ′2←ÐW ′

3

φ′3←Ð ⋯) .

There is a bijection ←Ðϕ ∶ X̃ →
←Ð
Γ given by [α]↦

←ÐÐ
(rn)n.

The elements of X̃ are homotopy classes [α] of paths in X and
rn = reduction of the word spelled by the projection of α into Xn.

Given x̃ ∈ X̃ , there is a unique arc α̃ in X̃ from the base point to x̃ .
Let α = p ○ α̃ be the projection into X . Then x̃ = [α].

H. Fischer, A. Zastrow Generalized Cayley graphs
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One might try measuring the distance between two word sequences

(ωn)n and (ξn)n of
←Ð
Γ ⊆W by

∥(ωn)n∥ + ∥(ξn)n∥ − 2∥(ωn)n ∧ (ξn)n∥

where ∧ denotes the (stabilized) combinatorial overlap function.

Example:

Completion: For (ωn)n ∈W we define a completion (ωn)n ∈W.
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←Ð
Γ

′

bijections

��

←Ð
Γ

“ ”oo

Γ

“←Ð”

??

Define

d((ωn)n, (ξn)n) = ∥(ωn)n∥ + ∥(ξn)n∥ − 2∥(ωn)n ∧ (ξn)n∥

Theorem 2

(a) The function d defines a metric on
←Ð
Γ .

(b) The metric space (
←Ð
Γ ,d) is an R-tree.

(c) The function ←Ðϕ ∶ X̃ →
←Ð
Γ is a homeomorphism.
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Summary: Generalized Cayley Graph
←Ð
G = {stabilized locally eventually constant closed sequences}
forms a group under (ωn)n ∗ (ξn)n =

←ÐÐÐÐ
(ωnξn)′n and

←Ð
G ≅ π1(X ).

←Ð
Γ = {stabilized locally eventually constant sequences}
is an R-tree with radial word length metric

d((ωn)n, (ξn)n) = ∥(ωn)n∥ + ∥(ξn)n∥ − 2∥(ωn)n ∧ (ξn)n∥.

Arcs in
←Ð
Γ whose endpoints (ωn)n and (ξn)n are in

←Ð
G

generate the labels for the word sequence (ωn)−1
n ∗ (ξn)n.

←Ð
G acts freely and by homeomorphism on

←Ð
Γ via its natural

action (ωn)n.(ξn)n =
←ÐÐÐÐ
(ωnξn)′n.
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Theorem 3

Suppose the essential multiplicity of every letter is finite.

Then
←Ð
Γ /
←Ð
G is homeomorphic to X .

Essential Multiplicity:

We write u1
v∼ u2 if φn ○ φn+1 ○ ⋯ ○ φk−1(u1) = v ,

φn ○ φn+1 ○ ⋯ ○ φk−1(u2) = v ,
φn ○ φn+1 ○ ⋯ ○ φk−1(ωk) = v ,

for some word ωk containing both letters u1 and u2.

Let ck(v) denote the number of
v∼ -equivalence classes at level k .

Then cn+1(v) ⩽ cn+2(v) ⩽ cn+3(v) ⩽ ⋯
We call lim

k→∞
ck(v) the essential multiplicity of v .

Proof (of Theorem 3): The essential multiplicity of every letter is
finite ⇔ X is locally path-connected ⇒ X̃ /π1(X ) = X .
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Natural Limitation: In general, there is no R-tree metric for X̃

such that the action of π1(X ) ≅ Aut(X̃
p
→ X ) on X̃ is by isometry.

Example: X = Hawaiian Earring.

l1

l2

l3

Suppose every lift of a given loop li has the same length in X̃ .

Consider a loop L = ln1
1 ln2

2 ln3
3 ⋯ with sufficiently large ni .

Then the lift of L is an arc of infinite length.

In an R-tree: length of an arc = distance between endpoints.
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