Motivation Approach Word Sequences

# Generalized Cayley graphs for fundamental groups of one-dimensional spaces

# Hanspeter Fischer (Ball State University, USA) joint work with Andreas Zastrow (University of Gdańsk, Poland)

# Dubrovnik VII – Geometric Topology July 1, 2011

 Motivation
 Fundamental Groups of 1-Dimensional Spaces

 Approach
 Question

 Word Sequences
 The Tame Case

# Fundamental groups of general 1-dimensional Peano continua are notoriously difficult to analyze:



Hawaiian Earring



Sierpiński carpet

• • • • • • • • • • •



#### Menger curve

# Theorems [Eda 2002-2010]

Let X and Y be 1-dimensional Peano continua.

A.  $\pi_1(Sierpiński \ carpet) \not = \pi_1(Hawaiian \ Earring),$ 

 $\pi_1(Menger \ curve) \quad \not\Rightarrow \pi_1(Hawaiian \ Earring).$ 

B. If X and Y are **not** locally simply-connected at **any** point and if  $\pi_1(X) \cong \pi_1(Y)$ , then X and Y are homeomorphic.

C. If  $\pi_1(X) \cong \pi_1(Y)$ , then X and Y are homotopy equivalent.

イロン イヨン イヨン イヨン

#### Theorems [Curtis-Fort 1959]

- A. Suppose X is a 1-dimensional Peano continuum. Then  $\pi_1(X)$  is free  $\Leftrightarrow X$  is (semi)locally simply-connected  $\Leftrightarrow \pi_1(X)$  is finitely presented  $\Leftrightarrow \pi_1(X)$  is countable
- B. Suppose X is a 1-dimensional separable metric space. Then every finitely generated subgroup of  $\pi_1(X)$  is free.
- C. The homotopy class of every loop in a 1-dimensional separable metric space has an essentially unique shortest representative.

イロト イヨト イヨト イヨト

# Question [Cannon-Conner 2006]

Given a 1-dimensional path-connected compact metric space X, is there a tree-like object that might be considered the topological Cayley graph for  $\pi_1(X)$ ?

## Solution

- A combinatorial description of an ℝ-tree (i.e. a uniquely arcwise connected geodesic space),
- along with a combinatorial description of  $\pi_1(X)$ , which
- to the extend possible, functions like a Cayley graph for  $\pi_1(X)$

イロト イヨト イヨト イヨト

 Motivation
 Fundamental Groups of 1-Dimensional Spaces

 Approach
 Question

 Word Sequences
 The Tame Case

Functionality of a classical Cayley graph:

$$G = \langle a, b \mid a^5 = e, b^2 = e, ab = ba^{-1} \rangle$$



- There is a natural distance based on word length: d(g, h) = 2
- G acts on the Cayley graph by graph automorphism
- G acts freely and transitively on the vertex set

イロン イヨン イヨン イヨン





Collapsing all translates of a maximal tree in the universal covering space yields a Cayley graph for the free fundamental group  $\pi_1(X)$ 

Image: A mathematical states and a mathem

| Motivation     | Fundamental Groups of 1-Dimensional Spaces |
|----------------|--------------------------------------------|
| Approach       | Question                                   |
| Word Sequences | The Tame Case                              |

#### Obstacles

In general, we are facing the following obstacles:

- $\pi_1(X)$  might be uncountable
- There might not be a universal covering space
- Collapsing contractible subsets of X might change  $\pi_1(X)$

$$\pi_1(\bigcirc \bigcirc \bigcirc) \notin \pi_1(\bigcirc \bigcirc \bigcirc)$$

A ₽

# Theorem [Curtis-Fort '59, Eda-Kawamura '98]

Let X be a 1-dimensional separable metric space, or let X be a 1-dimensional compact Hausdorff space. Then the natural homomorphism  $\varphi : \pi_1(X) \hookrightarrow \check{\pi}_1(X)$  is injective.

Suppose 
$$X = \lim_{\leftarrow} \left( X_1 \stackrel{f_1}{\leftarrow} X_2 \stackrel{f_2}{\leftarrow} X_3 \stackrel{f_3}{\leftarrow} \cdots \right)$$
 with finite graphs  $X_n$ .

(Example: If X is the boundary of a CAT(0) 2-complex, we can take metric spheres for  $X_n$  and geodesic retraction for  $f_n$ .)

Then 
$$\check{\pi}_1(X) = \lim_{\longleftarrow} \left( \pi_1(X_1) \stackrel{f_{1\#}}{\leftarrow} \pi_1(X_2) \stackrel{f_{2\#}}{\leftarrow} \pi_1(X_3) \stackrel{f_{3\#}}{\leftarrow} \cdots \right).$$

 $\check{\pi}_1(X)$  = coherent sequences of reduced words in free groups. **Problem:** How do we identify the image of  $\pi_1(X)$  in  $\check{\pi}_1(X)$ ?

# Theorem [F-Zastrow 2007]

Suppose X is a path-connected topological space. If the natural homomorphism  $\varphi : \pi_1(X) \hookrightarrow \check{\pi}_1(X)$  is injective, then there is a **generalized universal covering**  $p : \tilde{X} \to X$ , that is, a continuous surjection characterized by the usual lifting criterion:

 $\widetilde{X}$  = path-conn,

loc path-conn, simply conn.

Y = path-conn,loc path-conn. (

 $(\widetilde{X},\widetilde{x})$   $\exists g \qquad \downarrow p \qquad \longleftrightarrow f_{\#}(\pi_{1}(Y,y)) = 1$   $(Y,y) \xrightarrow{\forall f} (X,x)$ 

- $\pi_1(X) \cong Aut(\widetilde{X} \xrightarrow{p} X)$  acts freely and transitively on  $p^{-1}(x)$ ;
- If X is 1-dimensional separable metric, then X̃ is an ℝ-tree.
   (There is no ℝ-tree metric for which π<sub>1</sub>(X) acts by isometry.)

**Problem:** How do we combinatorially describe  $\widetilde{X}$ ?

#### General Assumption

Let X be a 1-dimensional path-connected compact metric space.

Express 
$$X = \lim_{\leftarrow} \left( X_1 \stackrel{f_1}{\leftarrow} X_2 \stackrel{f_2}{\leftarrow} X_3 \stackrel{f_3}{\leftarrow} \cdots \right)$$
 with finite graphs  $X_n$ .

Arrange that  $f_n: X_{n+1} \to X_n^*$  maps each edge linearly onto an edge of a regular subdivision  $X_n^*$  of  $X_n$  and fix a base point  $(x_n)_n \in X$ .

Let  $\mathcal{W}_n = \begin{cases} \text{all words } v_1 v_2 \cdots v_k \text{ over the vertex alphabet of } X_n \\ \text{which describe paths starting at the base vertex } x_n \end{cases}$ 

Set of word sequences: 
$$\mathcal{W} = \lim_{\leftarrow} \left( \mathcal{W}_1 \xleftarrow{\phi_1} \mathcal{W}_2 \xleftarrow{\phi_2} \mathcal{W}_3 \xleftarrow{\phi_3} \cdots \right)$$

where  $\phi_n : \mathcal{W}_{n+1} \to \mathcal{W}_n$  is the natural combinatorial projection.

・ロン ・聞と ・ほと ・ほと



**Combinatorial Description** Dynamic Word Length Results

## Example:



イロン イヨン イヨン イヨン

æ



Example:



 $\omega_2 = E F H I M Q T V U R L J H G$  $\omega_1 = \phi_2(\omega_2) = ABCB/A \qquad A \qquad B \qquad C \qquad C \qquad B$ 

Formally, we allow for words of the form " $v_1v_2\cdots v_k/v_{k+1}$ " in  $\mathcal{W}_n$ , unless this can eventually be avoided. (" $0.999\ldots = 1.000\ldots$ ")

Motivation Combinatorial Description Approach Dynamic Word Length Word Sequences Results

#### **Combinatorial Reduction:**

Given a word  $\omega_n$ , repeatedly apply the following replacements

until this is no longer possible. Denote the resulting word by  $\omega'_n$ .



$$\omega_n = ABEDCDADEA$$

<ロ> <同> <同> <同> < 同>

\_∢≣≯

Motivation Combinatorial Description Approach Dynamic Word Length Word Sequences Results

#### **Combinatorial Reduction:**

Given a word  $\omega_n$ , repeatedly apply the following replacements

until this is no longer possible. Denote the resulting word by  $\omega'_n$ .



$$\omega_n = ABEDCDADEA$$
  
ABED ADEA

<ロ> <同> <同> <同> < 同>

\_∢ ≣ ≯

**Combinatorial Description** Motivation **Dynamic Word Length** Approach Word Sequences Results

#### **Combinatorial Reduction:**

Given a word  $\omega_n$ , repeatedly apply the following replacements

ADEA

EA

イロト イヨト イヨト イヨト

until this is no longer possible. Denote the resulting word by  $\omega'_n$ .



 Motivation
 Combinatorial Description

 Approach
 Dynamic Word Length

 Word Sequences
 Results

#### **Combinatorial Reduction:**

Given a word  $\omega_n$ , repeatedly apply the following replacements

until this is no longer possible. Denote the resulting word by  $\omega'_n$ .



イロト イヨト イヨト イヨト

 Motivation
 Combinatorial Description

 Approach
 Dynamic Word Length

 Word Sequences
 Results

#### **Combinatorial Reduction:**

Given a word  $\omega_n$ , repeatedly apply the following replacements

until this is no longer possible. Denote the resulting word by  $\omega'_n$ .



イロト イヨト イヨト イヨト

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

Let  $\Omega_n = \{ \text{words in } \mathcal{W}_n \text{ that start and end at } x_n \}.$ 

Then  $\Omega'_n \cong \pi_1(X_n)$  under  $g_n * h_n = (g_n h_n)'$  and

$$\check{\pi}_1(X) = \lim_{\longleftarrow} \left( \Omega'_1 \stackrel{\phi'_1}{\longleftarrow} \Omega'_2 \stackrel{\phi'_2}{\longleftarrow} \Omega'_3 \stackrel{\phi'_3}{\longleftarrow} \cdots \right).$$

Recall the injective homomorphism  $\varphi : \pi_1(X) \hookrightarrow \check{\pi}_1(X)$ .

#### Proposition

An element of  $(g_n)_n \in \check{\pi}_1(X)$  is in  $\mathcal{G} = \varphi(\pi_1(X))$  if and only if  $(g_n)_n$  is **locally eventually constant**, i.e., iff for every *n* the sequence  $(\phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_{k-1}(g_k))_{k>n}$  is eventually constant in  $\Omega_n$ .

For  $(g_n)_n \in \mathcal{G}$  we define the **stabilization**  $\overleftarrow{(g_n)_n} = (\omega_n)_n \in \mathcal{W}$  by  $\omega_n = \phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_{k-1}(g_k)$  for sufficiently large k.

< 注入 < 注入 -

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

**Example:** An element which is **not** locally eventually constant.



 $(g_n)_n = (I_1 I_2 I_1^{-1} I_2^{-1} I_1 I_3 I_1^{-1} I_3^{-1} \cdots I_1 I_n I_1^{-1} I_n^{-1})_n \notin \mathcal{G}$ 

< 用 → < 用 →

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

$$\mathcal{G} = \{(g_n)_n \in \check{\pi}_1(X) \mid (g_n)_n \text{ is locally eventually constant} \}$$

$$\overleftarrow{\mathcal{G}} = \{(\omega_n)_n \in \mathcal{W} \mid (\omega_n)_n = \overleftarrow{(g_n)_n} \text{ with } (g_n)_n \in \mathcal{G}\}$$

#### Theorem 1

$$\overleftarrow{\mathcal{G}}$$
 forms a group under  $(\omega_n)_n * (\xi_n)_n = \overleftarrow{(\omega_n \xi_n)'_n}$  and  $\overleftarrow{\mathcal{G}} \cong \pi_1(X)$ .

This generalizes the description of  $\pi_1(Sierpiński \ gasket)$  given by [Akiyama-Dorfer-Thuswaldner-Winkler 2009].

-∰ ▶ < ≣ ▶

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

#### Dynamic word length:

We assign weights to the letters of  $(\omega_n)_n \in \mathcal{W}$  recursively.

$$\omega_1 \stackrel{\phi_2}{\leftarrow} \omega_2 \stackrel{\phi_3}{\leftarrow} \omega_3 \stackrel{\phi_4}{\leftarrow} \cdots$$

Write  $\omega_1 = v_1 v_2 \cdots v_s / *$  (either  $\omega_1 = v_1 v_2 \cdots v_s$  or  $\omega_1 = v_1 v_2 \cdots v_s / v_{s+1}$ ). We assign the following weights to the letters  $v_1, v_2, \ldots, v_s$ .

| letter | <i>v</i> <sub>1</sub> | <i>v</i> <sub>2</sub> | V <sub>3</sub> | <br>Vs               |
|--------|-----------------------|-----------------------|----------------|----------------------|
| weight | 1/2                   | 1/4                   | 1/8            | <br>1/2 <sup>s</sup> |

(For words of the form  $v_1v_2\cdots v_s/v_{s+1}$ , we assign no weight to  $v_{s+1}$ .)

The weight scheme is then modeled on [Mayer-Overstegen 1990]:

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

Suppose the letters of  $\omega_n = v_1 v_2 \cdots v_k / *$  have the following weights:

| letter | $v_1$ | <i>v</i> <sub>2</sub> | V3             | <br>Vk             |
|--------|-------|-----------------------|----------------|--------------------|
| weight | $a_1$ | <i>a</i> 2            | a <sub>3</sub> | <br>a <sub>k</sub> |

Assign weights to  $\omega_{n+1} = u_1 u_2 \cdots u_m / *$  by inductively cutting  $\omega_{n+1}$  into maximal substrings with  $\phi_n(u_{i_t+1}u_{i_t+2}\cdots u_{i_{t+1}}) = v_{t+1}$ .

| <i>u</i> 1               | <b>u</b> 2 | <br><i>u</i> <sub><i>i</i>1</sub> | <i>u</i> <sub><i>i</i>1</sub> +1 | <i>u</i> <sub><i>i</i>1+2</sub> | <br><i>U</i> <sub>i2</sub> | <i>u</i> <sub><i>i</i><sub>2</sub>+1</sub> | <i>u</i> <sub><i>i</i><sub>2</sub>+2</sub> | ••• |
|--------------------------|------------|-----------------------------------|----------------------------------|---------------------------------|----------------------------|--------------------------------------------|--------------------------------------------|-----|
| <i>a</i> <sub>1</sub> /2 | $a_1/4$    | <br>$a_1/2^{i_1}$                 | $a_1/2^{i_1}$                    |                                 |                            |                                            |                                            |     |
|                          |            |                                   | + <i>a</i> <sub>2</sub> /2       | <i>a</i> <sub>2</sub> /4        | <br>$a_2/2^{i_2-i_1}$      | $a_2/2^{i_2-i_1}$                          |                                            |     |
|                          |            |                                   |                                  |                                 |                            | + <i>a</i> <sub>3</sub> /2                 | <i>a</i> 3/4                               |     |

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

For  $\omega_n = v_1 v_2 \cdots v_k / *$ , we define

$$|\omega_n| = weight(v_1) + weight(v_2) + \dots + weight(v_k)$$

For  $(\omega_n)_n \in \mathcal{W}$ , we have  $|\omega_1| > |\omega_2| > |\omega_3| > \cdots$  and define

$$\|(\omega_n)_n\| = \lim_{n \to \infty} |\omega_n|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

We let  $\Gamma$  be the set of all **locally eventually constant** elements of

$$\lim_{\leftarrow} \left( \mathcal{W}_1' \stackrel{\phi_1'}{\longleftarrow} \mathcal{W}_2' \stackrel{\phi_2'}{\longleftarrow} \mathcal{W}_3' \stackrel{\phi_3'}{\longleftarrow} \cdots \right).$$

There is a bijection  $\overleftarrow{\varphi}: \widetilde{X} \to \overleftarrow{\Gamma}$  given by  $[\alpha] \mapsto \overleftarrow{(r_n)_n}$ .

The elements of  $\widetilde{X}$  are homotopy classes  $[\alpha]$  of paths in X and  $r_n$  = reduction of the word spelled by the projection of  $\alpha$  into  $X_n$ .

Given  $\widetilde{x} \in \widetilde{X}$ , there is a unique arc  $\widetilde{\alpha}$  in  $\widetilde{X}$  from the base point to  $\widetilde{x}$ . Let  $\alpha = p \circ \widetilde{\alpha}$  be the projection into X. Then  $\widetilde{x} = [\alpha]$ .

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

One might try measuring the distance between two word sequences  $(\omega_n)_n$  and  $(\xi_n)_n$  of  $\overleftarrow{\Gamma} \subseteq \mathcal{W}$  by

$$\left\| (\omega_n)_n \right\| + \left\| (\xi_n)_n \right\| - 2 \left\| (\omega_n)_n \wedge (\xi_n)_n \right\|$$

where  $\land$  denotes the (stabilized) combinatorial overlap function.

#### Example:



| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

One might try measuring the distance between two word sequences  $(\omega_n)_n$  and  $(\xi_n)_n$  of  $\overleftarrow{\Gamma} \subseteq \mathcal{W}$  by

$$\left\| (\omega_n)_n \right\| + \left\| (\xi_n)_n \right\| - 2 \left\| (\omega_n)_n \wedge (\xi_n)_n \right\|$$

where  $\land$  denotes the (stabilized) combinatorial overlap function.

#### Example:



**Completion:** For  $(\omega_n)_n \in \mathcal{W}$  we define a completion  $(\omega_n)_n \in \mathcal{W}$ .





#### Define

$$d((\omega_n)_n, (\xi_n)_n) = \left\| \overline{(\omega_n)_n} \right\| + \left\| \overline{(\xi_n)_n} \right\| - 2 \left\| \overline{(\omega_n)_n} \wedge \overline{(\xi_n)_n} \right\|$$

#### Theorem 2

(a) The function d defines a metric on  $\overleftarrow{\Gamma}$ .

- (b) The metric space  $(\overleftarrow{\Gamma}, d)$  is an  $\mathbb{R}$ -tree.
- (c) The function  $\overleftarrow{\varphi}: \widetilde{X} \to \overleftarrow{\Gamma}$  is a homeomorphism.

・ロト ・回ト ・ヨト

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

#### Summary: Generalized Cayley Graph

- $\overleftarrow{\mathcal{G}} = \{ \text{stabilized locally eventually constant closed sequences} \}$ forms a group under  $(\omega_n)_n * (\xi_n)_n = \overleftarrow{(\omega_n \xi_n)'_n}$  and  $\overleftarrow{\mathcal{G}} \cong \pi_1(X)$ .
- Γ = {stabilized locally eventually constant sequences} is an ℝ-tree with radial word length metric

$$d((\omega_n)_n, (\xi_n)_n) = \left\| \overline{(\omega_n)_n} \right\| + \left\| \overline{(\xi_n)_n} \right\| - 2 \left\| \overline{(\omega_n)_n} \wedge \overline{(\xi_n)_n} \right\|.$$

Arcs in Γ whose endpoints (ω<sub>n</sub>)<sub>n</sub> and (ξ<sub>n</sub>)<sub>n</sub> are in G generate the labels for the word sequence (ω<sub>n</sub>)<sub>n</sub><sup>-1</sup> \* (ξ<sub>n</sub>)<sub>n</sub>.
G acts freely and by homeomorphism on Γ via its natural action (ω<sub>n</sub>)<sub>n</sub>.(ξ<sub>n</sub>)<sub>n</sub> = (ω<sub>n</sub>ξ<sub>n</sub>)'<sub>n</sub>.

→ 同 → → 三 →

| Motivation     | Combinatorial Description |
|----------------|---------------------------|
| Approach       | Dynamic Word Length       |
| Word Sequences | Results                   |

#### Theorem 3

Suppose the essential multiplicity of every letter is finite. Then  $\overleftarrow{\Gamma}/\overleftarrow{\mathcal{G}}$  is homeomorphic to X.

# **Essential Multiplicity:**

We write 
$$u_1 \stackrel{\vee}{\sim} u_2$$
 if  $\phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_{k-1}(u_1) = v$ ,  
 $\phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_{k-1}(u_2) = v$ ,  
 $\phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_{k-1}(\omega_k) = v$ ,

for some word  $\omega_k$  containing both letters  $u_1$  and  $u_2$ .

Let  $c_k(v)$  denote the number of  $\stackrel{v}{\sim}$  -equivalence classes at level k. Then  $c_{n+1}(v) \leq c_{n+2}(v) \leq c_{n+3}(v) \leq \cdots$ 

We call  $\lim_{k\to\infty} c_k(v)$  the **essential multiplicity** of v.

**Proof** (of Theorem 3): The essential multiplicity of every letter is finite  $\Leftrightarrow X$  is locally path-connected  $\Rightarrow \widetilde{X}/\pi_1(X) = X$ .



**Natural Limitation:** In general, there is no  $\mathbb{R}$ -tree metric for  $\widetilde{X}$  such that the action of  $\pi_1(X) \cong Aut(\widetilde{X} \xrightarrow{p} X)$  on  $\widetilde{X}$  is by isometry.

**Example:** X = Hawaiian Earring.



Suppose every lift of a given loop  $l_i$  has the same length in  $\hat{X}$ . Consider a loop  $L = l_1^{n_1} l_2^{n_2} l_3^{n_3} \cdots$  with sufficiently large  $n_i$ . Then the lift of L is an arc of infinite length. In an  $\mathbb{R}$ -tree: length of an arc = distance between endpoints.