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Motivation Fundamental Groups of 1-Dimensional Spaces
Question
The Tame Case

Fundamental groups of general 1-dimensional Peano
continua are notoriously difficult to analyze:

h
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Hawaiian Earring Sierpinski carpet

Menger curve
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Motivation Fundamental Groups of 1-Dimensional Spaces
Question
The Tame Case

Theorems [Eda 2002-2010]
Let X and Y be 1-dimensional Peano continua.

A. m1(Sierpinski carpet) < m1(Hawaiian Earring),
m1(Menger curve) < mi(Hawaiian Earring).

B. If X and Y are not locally simply-connected at any point and
if m1(X) 2m1(Y), then X and Y are homeomorphic.

C. If m(X) 2 71(Y), then X and Y are homotopy equivalent.

o’
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Motivation Fundamental Groups of 1-Dimensional Spaces
Question
The Tame Case

Theorems [Curtis-Fort 1959]

A. Suppose X is a 1-dimensional Peano continuum.
Then 71 (X) is free < X is (semi)locally simply-connected
< m1(X) is finitely presented
< m1(X) is countable

B. Suppose X is a 1-dimensional separable metric space.
Then every finitely generated subgroup of 71 (X) is free.

C. The homotopy class of every loop in a 1-dimensional separable
metric space has an essentially unique shortest representative.
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Motivation Fundamental Groups of 1-Dimensional Spaces
Question

The Tame Case

Question [Cannon-Conner 2006]

Given a 1-dimensional path-connected compact metric space X,
is there a tree-like object that might be considered the topological
Cayley graph for m1(X)?

Solution

@ A combinatorial description of an R-tree
(i.e. a uniquely arcwise connected geodesic space),

@ along with a combinatorial description of 71(X), which

@ to the extend possible, functions like a Cayley graph for 1 (X)
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Motivation Fundamental Groups of 1-Dimensional Spaces
Question

The Tame Case

Functionality of a classical Cayley graph:

G:<a,b|a5:e7 b’ =e, ab:ba‘l)

& h g lh=abat
g th=aa
g th=bhaaa

@ There is a natural distance based on word length: d(g, h) =2
@ G acts on the Cayley graph by graph automorphism

@ G acts freely and transitively on the vertex set
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Motivation Fundamental Groups of 1-Dimensional Spaces
Question

The Tame Case

K5
The tame case: b $$
Ea Pt
LT
**t:% fiﬁ*
X= 1-dimensional simplicial complex .

Collapsing all translates of a maximal tree in the universal covering
space yields a Cayley graph for the free fundamental group 71 (X)
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Motivation Fundamental Groups of 1-Dimensional Spaces
Question

The Tame Case

Obstacles
In general, we are facing the following obstacles:

e 71(X) might be uncountable
@ There might not be a universal covering space

e Collapsing contractible subsets of X might change 71 (X)

Wl((@ @))im( )
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Approach Injection into the Shape Group

Generalized Universal Covering Spaces

Theorem [Curtis-Fort ‘59, Eda-Kawamura '98]

Let X be a 1-dimensional separable metric space, or
let X be a 1-dimensional compact Hausdorff space.
Then the natural homomorphism ¢ : 71 (X) < 71 (X) is injective.

Suppose X = lim (xl bx,lx8 ) with finite graphs X,

(Example: If X is the boundary of a CAT(0) 2-complex, we can
take metric spheres for X, and geodesic retraction for f,.)

fi f; fa
Then ’ﬁ'l(X) =lim (7‘[‘1(X1) <1—# 7'(1(X2) <2jE 71'1(X3) (?f )

71(X) = coherent sequences of reduced words in free groups.

Problem: How do we identify the image of 71 (X) in 71 (X)?
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Injection into the Shape Group

Approach Generalized Universal Covering Spaces

Theorem [F-Zastrow 2007]

Suppose X is a path-connected topological space.

If the natural homomorphism ¢ : 71 (X) < #1(X) is injective, then
there is a generalized universal covering p: X = X, that is, a
continuous surjection characterized by the usual lifting criterion:

X = path-conn, =

loc path-conn, E(X’X)

simply conn. H'g lp = fu(m(Y,y)) =1
Y = path-conn, (Y ,yj ' 5 (X, x)

loc path-conn.
o m1(X) = Aut(X L4 X) acts freely and transitively on p~1(x);

e If X is 1-dimensional separable metric, then X is an R-tree.
(There is no R-tree metric for which 71 (X) acts by isometry.)

Problem: How do we combinatorially describe X?
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

General Assumption ’

Let X be a 1-dimensional path-connected compact metric space.

Express X = lim (Xl i X5 2 X3 é ) with finite graphs X,,.

Arrange that f,: X,41 — X maps each edge linearly onto an edge
of a regular subdivision X, of X, and fix a base point (x,), € X.

all words vy vs---v, over the vertex alphabet of X,
which describe paths starting at the base vertex x,

Let W, :{

Set of word sequences: W = lim (Wl el Wo bicl Ws Bk )

where ¢, : Wyi1 — W, is the natural combinatorial projection.
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Example:

A

w=EFH IMQTVURL
w1 = ¢2(w2) = ABCB cC C
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Combinatorial Description
Dynamic Word Length

Word Sequences Results
Example:
A
C
D Y Z
wr=EFH IMQTVURLJHG
w1 = ¢2(w2) = ABCB/A cC C

Formally, we allow for words of the form “vivo---vi/vie1” in W,
unless this can eventually be avoided. (“0.999...=1.000...")
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Combinatorial Reduction:
Given a word w,, repeatedly apply the following replacements

LUV~ U
couvfu o o~ ufv

until this is no longer possible. Denote the resulting word by w/,.

Example: | B wn = ABEDCDADEA
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Combinatorial Reduction:
Given a word w,, repeatedly apply the following replacements

LUV~ U
couvfu o o~ ufv

until this is no longer possible. Denote the resulting word by w/,.

Example: | B wn = ABEDCDADEA
ABED  ADEA
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Combinatorial Reduction:
Given a word w,, repeatedly apply the following replacements

LUV~ U
couvfu o o~ ufv

until this is no longer possible. Denote the resulting word by w/,.

Example: B wn = ABEDCDADEA
ABED  ADEA
ABED EA
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Combinatorial Reduction:
Given a word w,, repeatedly apply the following replacements

LUVUL.. o~ U
couvfu o o~ ufv

until this is no longer possible. Denote the resulting word by w/,.

Example: B wn = ABEDCDADEA
ABED  ADEA
ABED EA
ABE A
C D E
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Combinatorial Reduction:
Given a word w,, repeatedly apply the following replacements

LUVUL.. o~ U
couvfu o o~ ufv

until this is no longer possible. Denote the resulting word by w/,.

Example: B wn = ABEDCDADEA
ABED  ADEA
ABED EA
ABE A
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Combinatorial Description

Dynamic Word Length
Word Sequences Results

Let ©, = {words in W, that start and end at x,}.
Then Q] = m1(X,) under g, * h, = (gnh,)’ and

/ (b’ 4
7“71(X):[i11( ’1<¢—IQ§<—ZQQ<¢—3---).

Recall the injective homomorphism ¢ : w1 (X) < %1 (X).

Proposition

An element of (gn)n € %1(X) is in G = (71 (X)) if and only if
(gn)n is locally eventually constant, i.e., iff for every n the
sequence (¢p 0 Ppt10--0Gk-1(8k))k>n is eventually constant in Q.

For (gn)n € G we define the stabilization (g,), = (wn), € W by
Wn=bno dps1 00 dk_1(gk) for sufficiently large k.
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Example: An element which is not locally eventually constant.

I L L
-+ -+ ~—— oo
g1 = const. <~ g2:/1/2/1_1/2_1 <~ g3:/1/2/1_1/2_1/1/3/1_1/3_1
(gn)n= (Ll s BTG b T Y, G O
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Combinatorial Description

Dynamic Word Length
Word Sequences Results

G ={(gn)n€1(X) | (gn)n is locally eventually constant}
G = {(@n)n €W | (@n)n = (@n)n with (g1)n € G}

Theorem 1

G forms a group under (wp)n * (€n)n = (wnén)}, and G = m1(X).

This generalizes the description of 71 (Sierpiriski gasket) given by
[Akiyama-Dorfer-Thuswaldner-Winkler 2009].
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

Dynamic word length:
We assign weights to the letters of (w,), € W recursively.

$2 ¢3 $a
W1 < W <1 W3z <t -

Write w1 = vivp---vs/* (either wy = vivo---vs OF w1 = ViVvo--Vs/Vss1).
We assign the following weights to the letters vi,va, ..., vs.

letter vi Vo vz | oo Vs
weight | 1/2 | 1/4 | 1/8 | --- | 1/2°

(For words of the form vyivy---vg/vsi1, we assign no weight to vsy1.)

The weight scheme is then modeled on [Mayer-Overstegen 1990]:
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

Suppose the letters of wy, = vy vo--+vi/* have the following weights:

letter | vi | vo | v3 | - | vk

weight | a1 | a2 | a3 | -+ | ak

Assign weights to wp41 = uup--um/* by inductively cutting wp1
into maximal substrings with @p(uj,+1Uj,+2--Uj,,,) = Ves1.

Vi V2 V3 75
oL
Uy U | Uj1 U U@J"'“g‘ ‘ Ujp_1+1 " Um
U]_ U2 uil Ui1+1 ui1+2 Ufg U/‘g +1 Llij +2
aif2 | a1/4 | - | a1/2"] a1/2" . o
+32/2 32/4 32/2127’1 82/2'2_11
+a3/2 | a3/4
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

For wp = vivp---vi /*, we define

lwn| = weight(vy) + weight(v2) + - + weight(vy)

For (wn)n € W, we have |wi| > |wa| > |w3] > -+ and define

[(wn)all = lim |
n—oo
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

We let I be the set of all locally eventually constant elements of
: ?1 #; 3
lim (W{ — W) <= W ) .

There is a bijection & : X — T given by [a] ~ (rm)n.

The elements of X are homotopy classes [a] of paths in X and
rn = reduction of the word spelled by the projection of « into X,,.

Given X € X, there is a unique arc @ in X from the base point to X.
Let o = po @& be the projection into X. Then X = [a].
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

One might try measuring the distance between two word sequences
(wn)n and (&p)p of T €W by

| @n)n

+ [ nn

=2 (wn)n A (&)

where A denotes the (stabilized) combinatorial overlap function.

Example:

[\ */A\ :
[\
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

One might try measuring the distance between two word sequences
(wn)n and (&p)p of T €W by

+|€nn| = 2] @ndn A (€0

| @n)n

where A denotes the (stabilized) combinatorial overlap function.

Example:

———————
-———e
-

e A A
AN [\

Completion: For (wp,), € W we define a completion (wp), € W.
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Combinatorial Description
Dynamic Word Length

Word Sequences Results
— w_n -
oo r
. bijections
ro . : u_n
» E

Define

d((@n)n (€n)n) = [(@n)n

+[[Emn

2| A e

Theorem 2

(a) The function d defines a metric on T.
(b) The metric space ((F, d) is an R-tree.

(c) The function % : X - Tisa homeomorphism.
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Combinatorial Description
Dynamic Word Length
Word Sequences Results

Summary: Generalized Cayley Graph

° (5 = {stabilized locally eventually constant closed sequences}
«— «—
forms a group under (wp)p * (€n)n = (Wn€n), and G = 1(X).

-
e [ = {stabilized locally eventually constant sequences}
is an R-tree with radial word length metric

- 2”(Wn)n A (én)n

d((@n)ns (€n)n) = [ @n)n

+[[En

o Arcsin T whose endpoints (wp), and (&,), are in @
generate the labels for the word sequence (wp);! * (&n)n-

° ? acts freely and by homeomorphism on T via its natural
: e
action (wn)n-(é.n)n = (wnfn)n'
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

Theorem 3

Suppose the essential multiplicity of every letter is finite.
“—

Then ' /G is homeomorphic to X.

Essential Multiplicity:

We write uy <~ up if  ¢podpi1o-o¢r_1(u)=v,
Gn O Pni1 00 Pp_1(U2) = v,
®n o Ppi1 00 Ppo1(wi) = v,

for some word wy containing both letters u; and w».
Let c,(v) denote the number of < -equivalence classes at level k.
Then cpi1(v) < cpea(v) < pas(v) <o

We call klim ck(v) the essential multiplicity of v.
—00

Proof (of Theorem 3): The essential multiplicity of every letter is
finite < X is locally path-connected = X/m1(X) = X. O
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Combinatorial Description
Dynamic Word Length

Word Sequences Results

Natural Limitation: In general, there is no R-tree metric for X
such that the action of 71(X) = Aut(X L X) on X is by isometry.

Example: X = Hawaiian Earring.

@

Suppose every lift of a given loop /; has the same length in X.
Consider a loop L = [[*I72[5%--- with sufficiently large n;.
Then the lift of L is an arc of infinite length.

In an R-tree: length of an arc = distance between endpoints. [
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