Partitions of unity in coarse geometry Dubrovnik VII – Geometric Topology June 26 - July 3, 2011

Jerzy Dydak

June 29, 2011

Abstract

I will outline how to use partitions of unity to explain **amenability via Følner** sequences, **Property A of Yu**, and **asymptotic dimension of Gromov**. Math Dept, University of Tennessee, Knoxville, TN 37996-1300, USA dydak@math.utk.edu Contents

- 1 Large scale versus small scale 2
- 2 Uniform dimension versus asymptotic dimension 7
- 3 Review of paracompactness 16
- 4 Review of Venn diagrams 20
- 5 Barycentric partitions of unity 25

- 6 Amenability and Folner sequences 31
- 7 Property A of Yu 35
- 8 Large scale paracompactness in terms of covers 40
- 9 Large scale absolute extensors 48
- 1 Large scale versus small scale

We allow the values of metrics (pseudo-metrics, semi-metrics?) to be 0 or infinity.

Two metrics d and ρ are **uniformly equiv**alent (the identity $id_X : (X, d) \to (X, \rho)$ is a **uniform homeomorphism**) provided $d(x_n, y_n) \to 0$ is equivalent to $\rho(x_n, y_n) \to 0$. Two metrics d and ρ are **coarsely equiv**alent (or large scale uniformly equivalent) provided $d(x_n, y_n) \to \infty$ is equivalent to $\rho(x_n, y_n) \to \infty$. **Basic example**: Two word metrics on the same finitely generated group G are coarsely equivalent.

The simplest case is that of QI-equivalent metrics.

Definition. Given $f: X \to (Y, d_Y)$ one induces a new metric d_f on X defined by

$$d_f(x,y) = d_Y(f(x),f(y)).$$

Definition. f is **large scale uniform** if d_X is coarsely equivalent to $d_f + d_X$. f is a **large scale embedding** if d_f is coarsely equivalent to d_X . 2 Uniform dimension versus asymptotic dimension

Defining the uniform dimension.

For each epsilon > 0 there is delta > 0 and a cover U of multiplicity at most n+1 such that U refines the cover by epsilon-balls and is a coarsening of the cover by delta-balls.

Figure 1: Uniform dimension

Defining the asymptotic dimension.

For each r > 0 there is s > 0 and a cover U of multiplicity at most n+1 such that U refines the cover by s-balls and is a coarsening of the cover by r-balls.

Figure 2: Asymptotic dimension

Philosophy: At scale r points are balls B(x,r) of radius r.

Example: Multiplicity at a point changes to multiplicity at scale $r: m_r(x, \mathcal{U})$. It is the number of elements of \mathcal{U} containing B(x, r).

Notice other authors use a **different def**inition of multiplicity at scale r: they count all elements of \mathcal{U} intersecting B(x, r). The advantage of our definition is that we do not have to introduce the concept of the Lebesgue number of a cover: the condition $1 \leq m_r(x, \mathcal{U})$ for all $x \in X$ is equivalent to the Lebesgue number of \mathcal{U} being at least r.

Alternative definition of uniform dimension: for each $\epsilon > 0$ there is an ϵ bounded family \mathcal{U} such that $1 \leq m_{\delta}(x, \mathcal{U}) \leq$ n+1 for all $x \in X$ for some $\delta > 0$. Alternative definition of asymptotic dimension: for each r > 0 there is a uniformly bounded family \mathcal{U} such that $1 \leq m_r(x, \mathcal{U}) \leq$ n+1 for all $x \in X$.

3 Review of paracompactness

Here is the correct definition of **paracompactness**:

For each open cover \mathcal{U} of the topological space X there is a continuous partition of unity $\phi : X \to |K|_m$ such that the family $\{\phi^{-1}(st(v))\}_{v \in K^{(0)}}$ refines \mathcal{U} .

By $|K|_m$ we mean the subspace of $l_1(V)$ $(V = K^{(0)})$ is the set of vertices of the simplicial complex |K| consisting of non-negative functions $f: V \to [0, 1]$ of finite support belonging to K such that $\sum f(v) = 1$. The $v \in V$ star of vertex v consists of all $f \in K$ such that f(v) > 0.

Large scale paracompactness. **Definition** (Cencelj, JD, Vavpetić). X is large scale paracompact if for each r > 0there is a $(\frac{1}{r}, \frac{1}{r})$ -Lipschitz partition of unity $\phi: X \to |K|_m$ such that the family $\{\phi^{-1}(st(v))\}_{v \in K}$ is uniformly bounded and has positive *r*-multiplicity at each point of X.

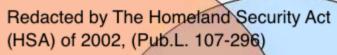
4 Review of Venn diagrams

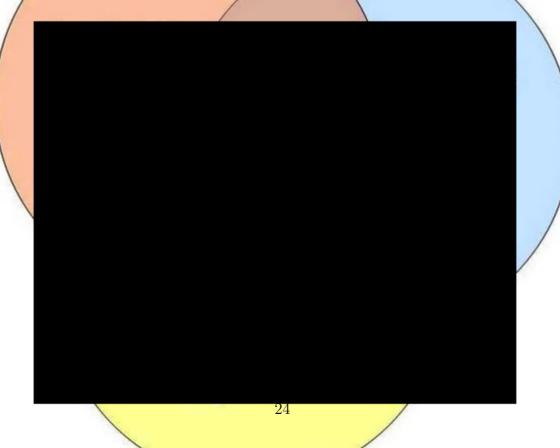
Venn diagrams at high school level

Redacted by The Homeland Security Act (HSA) of 2002, (Pub.L. 107-296)

Figure 3: Venn diagrams at high school level

Venn diagrams at university level





Quiz: Find X and Y for which the diagram makes sense.

a. List the string values of X and Y for which the diagram is the **least offensive** to you.

b. List the string values of X and Y for which the diagram is the **most offensive** to you.

5 Barycentric partitions of unity

By a **barycentric partition of unity** we mean a partition of unity $\phi : X \to |K|_m$ such that each of $\phi(x)$ is of the form $\frac{\chi_{A(x)}}{|A(x)|}$ for some finite subset $A(x) \subset V$.

In other words, each $\phi(x)$ is the **barycenter** of a simplex in K.

$$\begin{split} & \mathbf{Basic \ Lemma}: \\ & \frac{|A \triangle B|}{\max(|A|,|B|)} \leq \|\frac{\chi_A}{|A|} - \frac{\chi_B}{|B|}\|_1 \leq 2 \cdot \frac{|A \triangle B|}{\min(|A|,|B|)} \end{split}$$

Picture for Basic Lemma

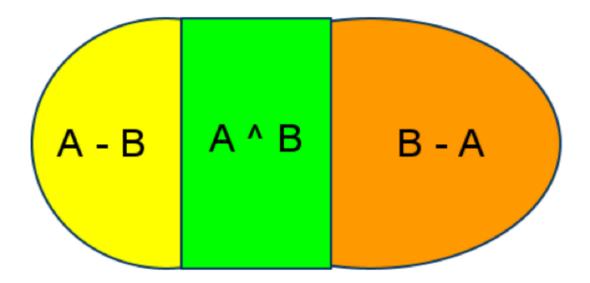


Figure 5: Picture for Basic Lemma

Proof of Basic Lemma:

$\||A| \cdot \chi_B - |B| \cdot \chi_A\|_1 =$

$|A| \cdot |A \setminus B| + |B| \cdot |B \setminus A| + |A \cap B| \cdot ||A| - |B||.$

6 Amenability and Folner sequences

One can introduce large scale geometry on a group G by declaring uniformly bounded families to be exactly those refining $\{g \cdot F\}_{g \in G}$ for some finite subset $F \subset G$ of G.

That structure is metrizable if and only if G is countable and, in case of finitely generated groups, is identical with the coarse structure induced by a word metric on G.

It is natural to consider barycentric partitions of unity on G of the form

$$\phi_F(x) = \frac{\chi_{x \cdot F}}{|F|}.$$

When can we find a sequence $\{F(n)\}_{n\geq 1}$ of finite subsets of G such that each $\phi_{F(n)}$ is (ϵ_n, ϵ_n) -Lipschitz and $\epsilon_n \to 0$ as $n \to \infty$?

Basic Lemma says
$$\begin{aligned} \frac{|x^{-1}yF(n)\triangle F(n)|}{|F(n)|} &\leq \|\phi_{F(n)}(x) - \phi_{F(n)}(y)\|_{1} \leq \\ & 2 \cdot \frac{|x^{-1}yF(n)\triangle F(n)|}{|F(n)|} \end{aligned}$$
That means we need

$$\lim_{n \to \infty} \frac{|gF(n) \triangle F(n)|}{|F(n)|} = 0$$
for every $g \in G$. That is the defining condition for a **Følner sequence**.

7 Property A of Yu

Suppose (X, d) is a metric space. When is there a sequence $\{\phi_n : X \to l_1(V_n)\}$ of barycentric partitions of unity that are (ϵ_n, ϵ_n) -Lipschitz and $\epsilon_n \to 0$ as $n \to \infty$? Given a barycentric partition of unity ϕ : $X \to l_1(V)$, we can pick $x_v \in \phi^{-1}(st(v))$ for each relevant $v \in V$. Now we can replace V by $X \times V$, and we can replace the carrier C(x) of each $\phi(x)$ by

$$A(x) = \{(x_{\mathcal{V}}, v) | v \in C(x)\}$$

Basic Lemma says: For each $r, \epsilon > 0$ there are finite subsets A(x) of $X \times V$ such that

$$\frac{|A(x) \triangle A(y)|}{|A(x) \cap A(y)|)} < \epsilon$$

if $d(x, y) \leq r$ and the family $\{\{x\} \cup \pi_X(A(x))\}_{x \in X}$ is uniformly bounded.

If one puts V = N this is the defining condition of Property A of Yu. **Theorem** (Cencelj,JD,Vavpetić). A metric space X of bounded geometry has Property A if and only if X is large scale paracompact.

8 Large scale paracompactness in terms of covers

Theorem (Cencelj,JD,Vavpetić,Virk). A metric space X of bounded geometry is large scale paracompact if and only if for each $r, \epsilon > 0$ there is a uniformly bounded family \mathcal{U} such that

$$\frac{m(x,\mathcal{U})}{m_r(x,\mathcal{U})} < 1 + \epsilon$$

for all $x \in X$.

In other words, the conditional probability of $B(x,r) \subset U$ given $x \in U \in \mathcal{U}$ can be as large as we want. **Application**: Any expander does not have Property A.

An expander is an infinite sequence of d-regular graphs G_k such that $|V(G_k)| \to \infty$ and there is c > 0 with the property that for any subset A of $V(G_k)$ with $|A| < |V(G_k)|/2$ the number of points in $V(G_k) \setminus A$ such that their 2-ball intersects A is at least $c \cdot |A|$. This can be weakened as follows: there is c > 0 with the property that for any subset A of $V(G_k)$ with $|A| < |V(G_k)|/2$ the number of points in A such that their 2-ball is not contained in A is at least $c \cdot |A|/d$.

Looking at a uniformly bounded family $\{U_s\}_{s \in S}$ in G_k the conditional probability of $B(x, 2) \subset$ U_s given $x \in U_s$ being bounded by p < 1from below, one can define n(x) as the number of elements of S such that $x \in U_s$. Now the set of pairs (x, s) such that $x \in U_s$ but B(x, 2) is not contained in U_s is at least

$$(c/d) \cdot \sum_{s \in S} |U_s|$$

and is at most

$$(1-p)\cdot\sum_{x\in V(G_k)}n(x)=(1-p)\cdot\sum_{s\in S}|U_s|.$$

Therefore

$$c/d \le 1 - p$$

and there is a bound on p from above

$$p \le 1 - c/d.$$

9 Large scale absolute extensors

The material of this section is due to JD and A.Mitra.

Definition. If K is a bounded metric space, then any function $f : X \to K$ has its Lipschitz number L(f) defined as the infimum of all $\epsilon > 0$ such that f is (ϵ, ϵ) -Lipschitz.

Definition. If $f : A \subset X \to K$, we consider extL(f), the infimum of Lipschitz numbers of all extensions of f over X. **Proposition**. Suppose $f_n : A_n \subset X \to X$ K are functions. If $L(f_n) \to 0$ with respect to a metric d_X on X, then $L(f_n) \to 0$ with respect to any metric ρ on X that is coarsely equivalent to d_X .

Definition. *K* is a **large scale absolute extensor** of *X* provided $extL(f_n) \rightarrow 0$ if $L(f_n) \rightarrow 0$ for any sequence $f_n : A \subset X \rightarrow K$.

Proposition. A stronger definition involving $f_n : A_n \subset X \to K$ is equivalent to the weaker condition. **Theorem** (JD,Mitra). If $asdim(X) < \infty$, then $asdim(X) \le n$ if and only if S^n is a large scale extensor of X.