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1 Large scale versus small scale



We allow the values of metrics (pseudo-metrics,
semi-metrics?) to be 0 or infinity.

Two metrics d and p are uniformly equiv-
alent (the identity idy : (X,d) — (X, p)
is a uniform homeomorphism) provided

d(xn,yn) — 0 is equivalent to p(xn, yn) —

0.



Two metrics d and p are coarsely equiv-
alent (or large scale uniformly equiva-

lent) provided d(xp, yn) — o0 is equivalent

to p(axn,yn) — 0.



Basic example: T'wo word metrics on the
same finitely generated group G are coarsely
equivalent.

The simplest case is that of Ql-equivalent

metrics.



Definition. Given f : X — (Y, dy ) one

induces a new metric d £ on X defined by

d¢(x,y) = dy (f(2), f())

Definition. f is large scale uniform if
dx 1s coarsely equivalent to d Ft dx.
f is a large scale embedding if d ¥ IS

coarsely equivalent to d .



2  Uniform dimension versus asymptotic dimension

Defining the uniform dimension.



0 delta U epsilon

n N
< UV UV

For each epsilon > O there is delta > 0 and a cover U
of multiplicity at most n+1 such that U refines the
cover by epsilon-balls and Is a coarsening of the

cover by delta-balls.

Figure 1: Uniform dimension



Defining the asymptotic dimension.
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Foreachr> Qthereiss >0 anda cover U of

multiplicity at most n+1 such that U refines the cover
by s-balls and is a coarsening of the cover by r-balls.

Figure 2: Asymptotic dimension
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Philosophy: At scale r points are balls

B(x,r) of radius 7.

12



Example: Multiplicity at a point changes
to multiplicity at scale r: my(z,U).
It is the number of elements of ¢/ containing

B(x,r).
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Notice other authors use a different def-
inition of multiplicity at scale r: they
count all elements of U intersecting B(x,r).
The advantage of our definition is that we
do not have to introduce the concept of the
Lebesgue number of a cover: the condition
1 < mp(z,U) for all x € X is equivalent to
the Lebesgue number of U being at least 7.
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Alternative definition of uniform di-

mension: for each € > (0 there is an e-

bounded family ¢/ such that 1 < mg(z,U) <
n + 1 for all x € X for some 0 > 0.
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Alternative definition of asymptotic

dimension: for each r > 0 there is a uni-

formly bounded family U such that 1 < my(x,U) <
n—+1foral r e X.
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3 Review of paracompactness
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Here is the correct definition of paracom-
pactness:

For each open cover U of the topological
space X there is a continuous partition of

unity ¢ : X — |K|m such that the family
—1
{¢ (St<v>)}UEK(O> refines U.
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By |K|m we mean the subspace of [{(V)
(V=K (0) is the set of vertices of the simpli-
cial complex |K|) consisting of non-negative

functions f : V' — [0, 1] of finite support be-

longing to K such that Y f(v) = 1. The
veV

star of vertex v consists of all f € K such

that f(v) > 0.
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Large scale paracompactness.
Definition (Cencelj,JD Vavpeti¢). X is

large scale paracompact if for each » > 0

11

there is a (5, 7)-Lipschitz partition of unity

¢ : X — |K|m such that the family {gb_l(st(v))}veK
is uniformly bounded and has positive r-multiplicity

at each point of X.
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4 Review of Venn diagrams

Venn diagrams at high school level
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Redacted by The Homeland Security Act
(HSA) of 2002, (Pub.L. 107-296)

Figure 3: Venn diagrz%%s at high school level



Venn diagrams at university level
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Redacted by The Home
(HSA) of 2002, (Put




Quiz: Find X and Y for which the diagram

makes sense.

a. List the string values of X and Y for
which the diagram is the least offensive to
you.

b. List the string values of X and Y for
which the diagram is the most offensive to

you.
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5 Barycentric partitions of unity
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By a barycentric partition of unity we
mean a partition of unity ¢ : X — |K|m
such that each of ¢(x) is of the form %
for some finite subset A(x) C V.

[n other words, each ¢(x) is the barycen-

ter of a simplex in K.
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Basic Lemma:
AAB| x4 X AAB]
< |+A-2B|| <2

max(|]A|,|B|) = "|A] |B] ‘min(|Al, |BJ)
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Picture for Basic Lemma
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Figure 5: Picture for Basic Lemma
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Proof of Basic Lemma:

1Al xg — Bl x4ll1 =

[Al-[A\B[+|B|-[B\A|+[ANB|-|[A] | BJ|
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6 Amenability and Folner sequences
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One can introduce large scale geometry on a
oroup G by declaring uniformly bounded fam-
ilies to be exactly those refining {g - F'} prete.
for some finite subset /' C G of G.

That structure is metrizable if and only if G
is countable and, in case of finitely generated
groups, is identical with the coarse structure

induced by a word metric on G.
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It is natural to consider barycentric parti-

tions of unity on G of the form

Op(z) = Xﬁ}f -

When can we find a sequence {F'(n)},>1
of finite subsets of G such that each ¢ i (n) is

(én, €n )-Lipschitz and €, — 0 as n — o0o?
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Basic Lemma says

2 Ly F(n)AF(n)]

Pl = 1rm)@)=pm Wi <
5. 2~ by F(n) AF(n)]
F(n)

That means we need

- loF(mAF(n)
n—oo  |F(n)
for every g € (G. That is the defining condi-

= (

tion for a Fglner sequence.
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7

Property A of Yu
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Suppose (X, d) is a metric space. When is
there a sequence {¢n : X — [{(Vn)} of
barycentric partitions of unity that are (ep,, en )-

Lipschitz and €y, — 0 as n — o0?
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Given a barycentric partition of unity ¢ :
X — [1(V), we can pick zy € gb_l(st(v))
for each relevant v € V. Now we can replace

V by X x V', and we can replace the carrier
C'(x) of each ¢(x) by

A(z) = (zv,v)|v € Clz)}
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Basic Lemma says: For each r,e > 0 there

are finite subsets A(x) of X x V such that
Alz) AA(y)
[A(z) N Aly)l)
if d(z,y) < rand the family {{x }Ur v (A(2))} .c x

< €

is uniformly bounded.
If one puts V = N this is the defining con-
dition of Property A of Yu.
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Theorem (Cencelj,JD,Vavpeti¢). A met-
ric space X of bounded geometry has Prop-
erty A if and only if X is large scale paracom-

pact.
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8 Large scale paracompactness in terms of covers

41



Theorem (Cencelj,JD, Vavpeti¢,Virk). A met-
ric space X of bounded geometry is large scale
paracompact if and only if for each r,e > 0
there is a uniformly bounded family U such

that

m(x,U)
me,Z/{)
for all x € X.

<1l+e€
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In other words, the conditional probability
of B(x,r) C U given x € U € U can be as

large as we want.
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Application: Any expander does not have
Property A.

An expander is an infinite sequence of d-
regular graphs G such that [V (Gp.)| — oo
and there is ¢ > 0 with the property that for
any subset A of V(G.) with [A] < |V(G}.)]/2
the number of points in V' (G}.) \ A such that
their 2-ball intersects A is at least ¢ - | A|.
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This can be weakened as follows: there is
¢ > 0 with the property that for any subset A
of V(Gp.) with |A] < |V(G}.)|/2 the number
of points in A such that their 2-ball is not
contained in A is at least ¢ - |A]/d.
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Looking at a uniformly bounded family {Us} ¢< g
in G, the conditional probability of B(x,2) C
Us given x € Ug being bounded by p < 1
from below, one can define n(x) as the num-

ber of elements of S such that x € Usg.
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Now the set of pairs (x, s) such that x € Usg

but B(x,2) is not contained in Ug is at least

(c/d)- > " |Us
sesS
and 1s at most

(1=p)- Y  n@)=00-p- ) |Us

reV(Gp) seS
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Therefore

c/d<1—p
and there is a bound on p from above

p<1-—c¢/d.
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9 Large scale absolute extensors
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The material of this section is due to JD and
A Mitra.

Definition. If K is a bounded metric space,
then any function f : X — K has its Lips-
chitz number L(f) defined as the infimum of
all € > 0 such that f is (e, €)-Lipschitz.
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Definition. If f : A C X — K. we
consider extL(f), the infimum of Lipschitz
numbers of all extensions of f over X.

Proposition. Suppose fn, : Ap C X —
K are functions. If L(fn) — 0 with respect
to a metric d y- on X, then L(fn) — 0 with
respect to any metric p on X that is coarsely

equivalent to d .
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Definition. K is a large scale abso-
lute extensor of X provided extL(fn,) — 0
if L(fn) — 0 for any sequence fn, : A C
X — K.

Proposition. A stronger definition involv-
ing fn : An C X — K is equivalent to the

weaker condition.
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Theorem (JD,Mitra). If asdim(X) < oo,
then asdim(X) < n if and only if S is a

large scale extensor of X.
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