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1 Large scale versus small scale
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We allow the values of metrics (pseudo-metrics,

semi-metrics?) to be 0 or infinity.

Two metrics d and ρ are uniformly equiv-

alent (the identity idX : (X, d) → (X, ρ)

is a uniform homeomorphism) provided

d(xn, yn) → 0 is equivalent to ρ(xn, yn) →
0.
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Two metrics d and ρ are coarsely equiv-

alent (or large scale uniformly equiva-

lent) provided d(xn, yn)→∞ is equivalent

to ρ(xn, yn)→∞.
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Basic example: Two word metrics on the

same finitely generated group G are coarsely

equivalent.

The simplest case is that of QI-equivalent

metrics.
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Definition. Given f : X → (Y, dY ) one

induces a new metric df on X defined by

df (x, y) = dY (f (x), f (y)).

Definition. f is large scale uniform if

dX is coarsely equivalent to df + dX .

f is a large scale embedding if df is

coarsely equivalent to dX .
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2 Uniform dimension versus asymptotic dimension

Defining the uniform dimension.
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Figure 1: Uniform dimension
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Defining the asymptotic dimension.
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Figure 2: Asymptotic dimension
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Philosophy: At scale r points are balls

B(x, r) of radius r.
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Example: Multiplicity at a point changes

to multiplicity at scale r: mr(x,U).

It is the number of elements of U containing

B(x, r).
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Notice other authors use a different def-

inition of multiplicity at scale r: they

count all elements of U intersecting B(x, r).

The advantage of our definition is that we

do not have to introduce the concept of the

Lebesgue number of a cover: the condition

1 ≤ mr(x,U) for all x ∈ X is equivalent to

the Lebesgue number of U being at least r.
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Alternative definition of uniform di-

mension: for each ε > 0 there is an ε-

bounded family U such that 1 ≤ mδ(x,U) ≤
n + 1 for all x ∈ X for some δ > 0.
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Alternative definition of asymptotic

dimension: for each r > 0 there is a uni-

formly bounded family U such that 1 ≤ mr(x,U) ≤
n + 1 for all x ∈ X .
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3 Review of paracompactness
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Here is the correct definition of paracom-

pactness:

For each open cover U of the topological

space X there is a continuous partition of

unity φ : X → |K|m such that the family

{φ−1(st(v))}
v∈K(0) refines U .
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By |K|m we mean the subspace of l1(V )

(V = K(0) is the set of vertices of the simpli-

cial complex |K|) consisting of non-negative

functions f : V → [0, 1] of finite support be-

longing to K such that
∑
v∈V

f (v) = 1. The

star of vertex v consists of all f ∈ K such

that f (v) > 0.
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Large scale paracompactness.

Definition (Cencelj,JD,Vavpetić). X is

large scale paracompact if for each r > 0

there is a (1
r,

1
r)-Lipschitz partition of unity

φ : X → |K|m such that the family {φ−1(st(v))}
v∈K(0)

is uniformly bounded and has positive r-multiplicity

at each point of X .
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4 Review of Venn diagrams

Venn diagrams at high school level
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Figure 3: Venn diagrams at high school level22



Venn diagrams at university level
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Figure 4: Venn diagrams at university level
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Quiz: FindX and Y for which the diagram

makes sense.

a. List the string values of X and Y for

which the diagram is the least offensive to

you.

b. List the string values of X and Y for

which the diagram is the most offensive to

you.
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5 Barycentric partitions of unity
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By a barycentric partition of unity we

mean a partition of unity φ : X → |K|m
such that each of φ(x) is of the form

χA(x)

|A(x)|
for some finite subset A(x) ⊂ V .

In other words, each φ(x) is the barycen-

ter of a simplex in K.
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Basic Lemma:

|A4B|
max(|A|, |B|)

≤ ‖
χA
|A|
−
χB
|B|
‖1 ≤ 2· |A4B|

min(|A|, |B|)
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Picture for Basic Lemma
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Figure 5: Picture for Basic Lemma
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Proof of Basic Lemma:

‖|A| · χB − |B| · χA‖1 =

|A|·|A\B|+|B|·|B\A|+|A∩B|·||A|−|B||.
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6 Amenability and Folner sequences
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One can introduce large scale geometry on a

groupG by declaring uniformly bounded fam-

ilies to be exactly those refining {g · F}g∈G
for some finite subset F ⊂ G of G.

That structure is metrizable if and only if G

is countable and, in case of finitely generated

groups, is identical with the coarse structure

induced by a word metric on G.
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It is natural to consider barycentric parti-

tions of unity on G of the form

φF (x) =
χx·F
|F |

.

When can we find a sequence {F (n)}n≥1

of finite subsets of G such that each φF (n) is

(εn, εn)-Lipschitz and εn→ 0 as n→∞?
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Basic Lemma says

|x−1yF (n)4F (n)|
|F (n)|

≤ ‖φF (n)(x)−φF (n)(y)‖1 ≤

2 · |x
−1yF (n)4F (n)|
|F (n)|

That means we need

lim
n→∞

|gF (n)4F (n)|
|F (n)|

= 0

for every g ∈ G. That is the defining condi-

tion for a Følner sequence.
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7 Property A of Yu
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Suppose (X, d) is a metric space. When is

there a sequence {φn : X → l1(Vn)} of

barycentric partitions of unity that are (εn, εn)-

Lipschitz and εn→ 0 as n→∞?
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Given a barycentric partition of unity φ :

X → l1(V ), we can pick xv ∈ φ−1(st(v))

for each relevant v ∈ V . Now we can replace

V by X × V , and we can replace the carrier

C(x) of each φ(x) by

A(x) = {(xv, v)|v ∈ C(x)}
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Basic Lemma says: For each r, ε > 0 there

are finite subsets A(x) of X × V such that

|A(x)4A(y)|
|A(x) ∩ A(y)|)

< ε

if d(x, y) ≤ r and the family {{x}∪πX(A(x))}x∈X
is uniformly bounded.

If one puts V = N this is the defining con-

dition of Property A of Yu.
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Theorem (Cencelj,JD,Vavpetić). A met-

ric space X of bounded geometry has Prop-

erty A if and only if X is large scale paracom-

pact.
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8 Large scale paracompactness in terms of covers

41



Theorem (Cencelj,JD,Vavpetić,Virk). A met-

ric spaceX of bounded geometry is large scale

paracompact if and only if for each r, ε > 0

there is a uniformly bounded family U such

that

m(x,U)

mr(x,U)
< 1 + ε

for all x ∈ X .
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In other words, the conditional probability

of B(x, r) ⊂ U given x ∈ U ∈ U can be as

large as we want.
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Application: Any expander does not have

Property A.

An expander is an infinite sequence of d-

regular graphs Gk such that |V (Gk)| → ∞
and there is c > 0 with the property that for

any subsetA of V (Gk) with |A| < |V (Gk)|/2

the number of points in V (Gk) \A such that

their 2-ball intersects A is at least c · |A|.
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This can be weakened as follows: there is

c > 0 with the property that for any subset A

of V (Gk) with |A| < |V (Gk)|/2 the number

of points in A such that their 2-ball is not

contained in A is at least c · |A|/d.
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Looking at a uniformly bounded family {Us}s∈S
inGk the conditional probability ofB(x, 2) ⊂
Us given x ∈ Us being bounded by p < 1

from below, one can define n(x) as the num-

ber of elements of S such that x ∈ Us.
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Now the set of pairs (x, s) such that x ∈ Us
but B(x, 2) is not contained in Us is at least

(c/d) ·
∑
s∈S
|Us|

and is at most

(1− p) ·
∑

x∈V (Gk)

n(x) = (1− p) ·
∑
s∈S
|Us|.
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Therefore

c/d ≤ 1− p

and there is a bound on p from above

p ≤ 1− c/d.
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9 Large scale absolute extensors
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The material of this section is due to JD and

A.Mitra.

Definition. IfK is a bounded metric space,

then any function f : X → K has its Lips-

chitz number L(f ) defined as the infimum of

all ε > 0 such that f is (ε, ε)-Lipschitz.
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Definition. If f : A ⊂ X → K, we

consider extL(f ), the infimum of Lipschitz

numbers of all extensions of f over X .

Proposition. Suppose fn : An ⊂ X →
K are functions. If L(fn) → 0 with respect

to a metric dX on X , then L(fn) → 0 with

respect to any metric ρ on X that is coarsely

equivalent to dX .

51



Definition. K is a large scale abso-

lute extensor ofX provided extL(fn)→ 0

if L(fn) → 0 for any sequence fn : A ⊂
X → K.

Proposition. A stronger definition involv-

ing fn : An ⊂ X → K is equivalent to the

weaker condition.
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Theorem (JD,Mitra). If asdim(X) <∞,

then asdim(X) ≤ n if and only if Sn is a

large scale extensor of X .
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