Right angularity, flag complexes, asphericity

Mike Davis

OSU

Dubrovnik July 1, 2011

Mike Davis Right angularity, flag complexes, asphericity

I want to discuss three related constructions of spaces and give conditions for each of them to be aspherical:

- polyhedral product construction,
- reflection trick applied to a "corner" of spaces,
- the pulback of a "corner" via a coloring of a simplicial complex.

All three are related to the construction of the Davis complex for a RACG

A cubical complex Its universal cover

Introduction

- A cubical complex
- Its universal cover
- 2 Polyhedral products
 - Graph products of groups
 - The fundamental group of a polyhedral product
 - When is a polyhedral product aspherical?

3 Corners

- Mirrored spaces
- The reflection group trick
- Pullbacks

A cubical complex Its universal cover

Notation

Given a simplicial complex L with vertex set I, put

- S(L) := {simplices in L} (including ∅)
- Given $\sigma \in S(L)$, $I(\sigma)$ is its vertex set.
- $[-1, 1]^{I}$ is the |I|-dim'l cube.
- C_2 (= {±1}) is the cyclic group of order 2. It acts on [-1, 1]. Hence, $(C_2)^{I} \sim [-1, 1]^{I}$.
- For $\mathbf{x} := (x_i)_{i \in I}$, a point in $[-1, 1]^I$, put

$$Supp(\mathbf{x}) := \{i \in I \mid x_i \in (-1, 1)\}.$$

A cubical complex Its universal cover

Define a subcx \mathcal{Z}_L (or $\mathcal{Z}_L([-1, 1], \{\pm 1\})$) of $[-1, 1]^I$ by $\mathcal{Z}_L := \{ \mathbf{x} \in [-1, 1]^I \mid \text{Supp}(\mathbf{x}) \in \mathcal{S}(L) \}$

Alternatively, suppose \mathcal{Z}_{σ} is the union of all faces parallel to $[-1, 1]^{l(\sigma)}$, ie, $\mathcal{Z}_{\sigma} = \{ \mathbf{x} \in [-1, 1]^{l} \mid x_{i} = \pm 1 \text{ if } i \notin l(\sigma) \}$. Then

$$\mathcal{Z}_L = \bigcup_{\sigma \in \mathcal{S}(L)} \mathcal{Z}_{\sigma}.$$

 \mathcal{Z}_L is stable under the $(\mathbf{C}_2)^l$ -action on $[-1, 1]^l$.

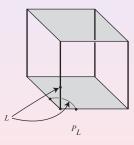
Example

If $L = \Delta$, the simplex on *I*, then S(L) is the power set of *I* and $Z_{\Delta} = [-1, 1]^{I}$.

A cubical complex Its universal cover

Example

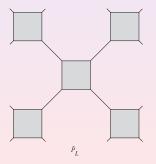
Suppose the vertex set *I* consists of 3 points and *L* is the disjoint union of 1 edge and 1 point.



A cubical complex Its universal cover

- Let $\widetilde{\mathcal{Z}}_L$ be the universal cover of \mathcal{Z}_L .
- The group of all lifts of the (C₂)¹-action is W_{L1}, the RACG associated to L¹, ie,

$$1 o \pi_1(\mathcal{Z}_L) o W_{L^1} o (\mathbf{C}_2)^I o 1$$



- (Recall *L* is a *flag cx* if it is obtained from *L*¹ by filling in every complete subgraph with simplex.)
- If this is the case, *Z̃_L* is the *Davis complex* associated to *W_L*.
- Next, we want to extend this to arbitrary pairs of spaces rather than ([-1, 1], {±1}).

Data

- A simplicial complex *L* with vertex set *I*.
- A family of pairs of spaces (<u>A</u>, <u>B</u>) = {(A(i), B(i))}_{i∈I}, indexed by *I*.

Definition

The *polyhedral product* $\mathcal{Z}_{L}(\underline{A}, \underline{B})$ is the subset of $\prod_{i \in I} A(i)$ consisting of those **x** such that Supp(**x**) $\in S(L)$.

Equivalently, if $\mathcal{Z}_{\sigma}(\underline{A},\underline{B}) := \{\mathbf{x} \in \prod A(i) \mid x_i \in B(i) \text{ if } i \notin \sigma\},\$

$$\mathcal{Z}_{L}(\underline{A},\underline{B}) = \bigcup_{\sigma \in \mathcal{S}(L)} \mathcal{Z}(\underline{A},\underline{B}).$$

If all (A(i), B(i)) are the same, say (A, B), then we omit underlining and write $\mathcal{Z}_L(A, B)$ instead of $\mathcal{Z}_L(\underline{A}, \underline{B})$.

Example

- If L is a flag cx, then Z_L(S¹, *) is the standard K(π, 1) for the RAAG associated to L¹.
- The space Z_L(D², S¹) has been called the *moment angle* complex. It is simply connected and admits an (S¹)¹-action.

There has been a great deal of work lately on computing cohomology and stable homotopy type of polyhedral products, by Bahri-Bendersky-Cohen-Gitler, Denham-Suciu, Buchstaber-Panov and others.

Data

- A simplicial graph L^1 with vertex set *I*.
- A family of discrete gps $\underline{G} = \{G_i\}_{i \in I}$

Definition

The graph product of the G_i is the group Γ formed quotienting the free product of the G_i by the normal subgroup generated by all commutators of the form $[g_i, g_j]$ where $\{i, j\} \in \text{Edge}(L^1)$, $g_i \in G_i$ and $g_j \in G_j$.

Example

- If all $G_i = \mathbf{C}_2$, then Γ is the RACG determined by L^1 .
- If all $G_i = \mathbb{Z}$, then Γ is the RAAG determined by L^1 .

Introduction Gr Polyhedral products Th Corners WI

Graph products of groups The fundamental group of a polyhedral product When is a polyhedral product aspherical?

If each A(i) is path connected & B(i) is a basepoint, $*_i$, then $\pi_1(\mathcal{Z}_L(\underline{A},\underline{B}))$ is the graph product of the $G_i := \pi_1(A(i),*_i)$. (Pf: van Kampen's Theorem).

Graph products of groups The fundamental group of a polyhedral product When is a polyhedral product aspherical?

Relative graph products

More data

For each $i \in I$, suppose given a gp G_i & a G_i -set E(i). Put (Cone $\underline{E}, \underline{E}$) := {(Cone E(i), E(i))} $_{i \in I}$.

Form the polyhedral product Z_L(Cone <u>E</u>, <u>E</u>). It is not simply connected if at least 1 E(i) has more than 1 element. Let

 $\widetilde{\mathcal{Z}}_L(\text{Cone }\underline{E},\underline{E}) := \text{ the univ cover of } \mathcal{Z}_L(\text{Cone }\underline{E},\underline{E}).$

G = ∏_{i∈I} G_i ∩ Z_L(Cone <u>E</u>, <u>E</u>). Let Γ be the gp of all lifts of G-action to Z̃_L(Cone <u>E</u>, <u>E</u>). Γ is the graph product of the G_i relative to the E(i). (Only the 1-skeleton, L¹, matters in this defn.) (This defn needs to be tweaked if G does not act effectively on ∏ E(i).)

 Introduction
 Graph products of groups

 Polyhedral products
 The fundamental group of a polyhedral product

 Corners
 When is a polyhedral product aspherical?

Example

If each $G_i = \mathbf{C}_2$, then $\mathcal{Z}_L(\text{Cone } \mathbf{C}_2, \mathbf{C}_2)$ is the space $\mathcal{Z}_L([-1, 1], \{\pm 1\})$ considered previously.

Remarks

- If each *E*(*i*) = *G_i*, then the group of lifts, Γ, agrees with the first definition of graph product.
- The inverse image of ∏_{i∈I} E(i) in Z̃_L(Cone <u>E</u>, <u>E</u>) is the set of (centers of) chambers in a "right-angled building" (a RAB).
- If *L* is a flag complex, then *Z̃*_L([−1, 1], {±1}) is the Davis complex for the RACG *W* and *Z̃*_L(Cone <u>*E*</u>, <u>*E*</u>) is the standard realization of the RAB.

Put G_i = π₁(A(i)) and let E(i) be the set of path components of p_i⁻¹(B(i)) in A(i). So, E(i) is a G_i-set.

Proposition

 $\pi_1(\mathcal{Z}_L(\underline{A},\underline{B})) = \Gamma$, where Γ is the relative graph product of the $(G_i, E(i))$.

Remember: $G = \prod G_i$ acts on $\mathcal{Z}_L(\text{Cone } \underline{E}, \underline{E})$ and Γ is gp of lifts of *G*-action to $\widetilde{\mathcal{Z}}_L(\text{Cone } \underline{E}, \underline{E})$.

Introduction Graph products of groups Polyhedral products Corners When is a polyhedral product aspherical?

Proof of Proposition.

$$\begin{split} &(\underline{\widetilde{A}},\underline{\widetilde{B}}) := \{(\widetilde{A}(i),p_i^{-1}(B(i)))\}_{i\in I}. \ \mathcal{Z}_L(\underline{\widetilde{A}},\underline{\widetilde{B}}) \to \mathcal{Z}_L(\underline{A},\underline{B}) \text{ is an} \\ &\text{intermediate covering space and } G \text{ is the gp of deck} \\ &\text{transformations. There is a } G\text{-equivariant map} \\ &\mathcal{Z}_L(\underline{\widetilde{A}},\underline{\widetilde{B}}) \to \mathcal{Z}_L(\text{Cone } \underline{E},\underline{E}) \text{ inducing an iso on } \pi_1. \text{ The univ} \\ &\text{cover } \widetilde{\mathcal{Z}}_L(\underline{A},\underline{B}) \to \mathcal{Z}_L(\underline{\widetilde{A}},\underline{\widetilde{B}}) \text{ is induced from} \\ &\widetilde{\mathcal{Z}}_L(\text{Cone } \underline{E},\underline{E}) \to \mathcal{Z}_L(\text{Cone } \underline{E},\underline{E}). \end{split}$$

When is a polyhedral product aspherical?

Suppose *L* is a flag cx. $\mathcal{Z}_L(A, B)$ is aspherical in the following cases:

- $\mathcal{Z}_L(S^1, *) = BA_L$, where A_L is the associated RAAG.
- $\mathcal{Z}_L([-1,1], \{\pm 1\}) = B\pi$, where $\pi = \text{Ker}(W_L \to (\mathbf{C}_2)^m)$.

What is the common generalization?

Definition

A pair of CW complexes (A, B) is *aspherical*, if A is aspherical, each path component of B is aspherical and the fundamental gp of any such component injects into $\pi_1(A)$.

Definition

A vertex *i* of a simplicial cx *L* is *conelike* if it is connected by an edge to every other vertex.

Introduction	Graph products of groups
Polyhedral products	The fundamental group of a polyhedral product
Corners	When is a polyhedral product aspherical?

Theorem

- $\mathcal{Z}_L(\underline{A},\underline{B})$ is aspherical \iff
 - Each A(i) is aspherical.
 - Por each non-conelike vertex i ∈ I, (A(i), B(i)) is aspherical.
 - L is a flag cx.

Corollary

If $(A(i), B(i)) = (BG_i, *)$ and L is a flag cx, then $\mathcal{Z}_L(\underline{A}, \underline{B}) = B\Gamma$, the classifying space for the graph product Γ .

Corollary

Suppose each $(A(i), B(i)) = (M_i, \partial M_i)$ is a mfld with bdry and an aspherical pair. Also suppose L is a flag triangulation of a sphere. Then $\mathcal{Z}_L(\underline{A}, \underline{B}) \subset \prod M_i$ is a closed aspherical mfld.

Graph products of groups The fundamental group of a polyhedral product When is a polyhedral product aspherical?

Ingredients for the proof

Retraction Lemma

Suppose $L' \subset L$ is a full subcx on vertex set l'. Then the map $r : \mathcal{Z}_{L}(\underline{A}, \underline{B}) \to \mathcal{Z}_{L'}(\underline{A}, \underline{B})$ induced by $\prod_{i \in I} \mathcal{A}(i) \to \prod_{i \in I'} \mathcal{A}(i)$ is a retraction.

RAB Lemma

Suppose $\underline{E} = (E(i))_{i \in I}$ is a collection of sets (each with the discrete topology). Then $\widetilde{\mathcal{Z}}_L(\text{Cone }\underline{E},\underline{E})$ is contractible $\iff L$ is a flag complex. Moreover, if this is the case, then $\widetilde{\mathcal{Z}}_L(\text{Cone }\underline{E},\underline{E})$ is the "standard realization" of a RAB of type W_L .

Restatement of Theorem

- $\mathcal{Z}_L(\underline{A},\underline{B})$ is aspherical \iff
 - Each A(i) is aspherical.
 - Por each non-conelike vertex i ∈ I, (A(i), B(i)) is aspherical.
 - L is a flag cx.

Comment

What is the point of Condition (ii)? If *L* is flag, then the set of conelike vertices spans a simplex Δ and *L* decomposes as a join, $L = L' * \Delta$, and \mathcal{Z}_L as a product:

$$\mathcal{Z}_{L}(\underline{A},\underline{B}) = Z_{L'}(\underline{A},\underline{B}) \times \prod_{i \in \text{Vert } \Delta} A(i),$$

so the B(i) for conelike vertices do not enter the picture.

Restatement of Theorem

- $\mathcal{Z}_L(\underline{A},\underline{B})$ is aspherical \iff
 - Each A(i) is aspherical.
 - **②** For each non-conelike vertex *i* ∈ *I*, (A(i), B(i)) is aspherical.
 - L is a flag cx.

Sketch of proof in \implies direction

- Retraction Lemma \implies (i) and (ii).
- RAB Lemma \implies (iii)

Introduction Mirrored spaces Polyhedral products The reflection group trick Corners Pullbacks

Definition

A mirror structure \mathcal{M} on a space X is a collection $\{X_i\}_{i \in I}$ of closed subspaces. Its *nerve* is the simplicial cx, $N(\mathcal{M})$, with vertex set I and $\sigma \leq I$ is a simplex iff $X_{\sigma} \neq \emptyset$, where $X_{\sigma} := \bigcap_{i \in \sigma} X_i$.

$$[n] = \{1, \ldots, n\}.$$

Definition

The mirror structure \mathcal{M} is a *corner* if I = [n] and $X_{[n]} \neq \emptyset$, ie, if $N(\mathcal{M}) = \Delta^{n-1}$.

- Let W be a finite Coxeter group of rank n with fund set of generators indexed by [n], eg, W = (C₂)ⁿ.
- Define equiv. relation \sim on $W \times X$ by $(w, x) \sim (w', x')$ iff x = x' and $w W_{l(x)} = w' W_{l(x)}$, where $l(x) := \{i \in [n] \mid x \in X_i\}$. The basic construction is the *W*-space,

•
$$\mathcal{U}(W, X) := (W \times X) / \sim.$$

• Question: When is $\mathcal{U}(W, X)$ aspherical?

- Let p: X̃ → X be the univ cover. For i ∈ [n], let E_i be the set of path components of p⁻¹(X_i) and let E = ∐_{i∈[n]} E_i.
- There is an induced mirror structure, $\widetilde{\mathcal{M}} = \{\widetilde{X}_e\}_{e \in E}$, where $\widetilde{X}_e := e$. Let $N (= N(\widetilde{\mathcal{M}}))$ denote its nerve.
- There is a "coloring" f : N → Δⁿ⁻¹ defined by E_i → i and an induced Coxeter group W_N with set of fund generators indexed by E.

Three conditions

- X is aspherical (ie, \tilde{X} is contractible),
- 2 For each $\sigma \in N(\widetilde{\mathcal{M}}), \widetilde{X}_{\sigma}$ is acyclic.
- $N(\widetilde{\mathcal{M}})$ is a flag cx.

Theorem

 $\mathcal{U}(W, X)$ is aspherical iff conditions 1, 2, 3.

Sketch.

Univ. cover is $\mathcal{U}(W_N, \widetilde{X})$. Three conditions \implies it is contractible.

Mirrored spaces The reflection group trick Pullbacks

When do these conditions hold?

Example (Products)

Suppose $(\underline{A}, \underline{B}) = (A(i), B(i))_{i \in [n]}$, where A(i) is aspherical and each component of B(i) is aspherical and π_1 -injective. Put $X = \prod_{i \in [n]} A(i)$. Define a corner structure on X by $X_i = \{\mathbf{x} \in \prod A(i) \mid x_i \in B(i)\}$. Let E_i be the set of path components of $p^{-1}(X_i)$ in \widetilde{X} . Since $N(\widetilde{\mathcal{M}})$ is the *n*-fold join, $* E_i$, it is a flag cx.

Example (Borel-Serre compactifications)

Suppose Γ is a torsion-free arithmetic lattice in the real points of an algebraic Lie group *G* of \mathbb{Q} -rank n > 0. The quotient of the symmetric space by Γ can be compactified to a manifold with corners *X* (which is a corner) so that each stratum is aspherical, π_1 -injective. The nerve $N(\widetilde{\mathcal{M}})$ is the spherical bldg associated to $G(\mathbb{Q})$; hence, a flag cx.

The idea of applying the reflection gp trick to these examples was explained to me by Tam Phan, who has recently written a preprint on the subject.

Introduction	Mirrored spaces
Polyhedral products	The reflection group trick
Corners	Pullbacks

- $f: L \to \Delta^{n-1}$ a nondegenerate simplicial surjection (a "coloring). It induces $f: S(L) \to S(\Delta^{n-1}) = \mathcal{P}([n])$. For $\tau \leq [n]$, let $\tau^{\check{}} := [n] \tau$
- $\mathcal{M} = \{X_i\}_{i \in [n]}$, a corner structure on X.
- Want to define a new space f*(X). For each σ ∈ S(L), define Q(σ) ≤ S(L) × X, by Q(σ) := (σ, X_{f(σ)}·). There is an obvious equiv relation on Q := ∐_{σ∈S(L)} Q(σ) which identifies (σ', X_{f(σ')}·) with the corresponding face of (σ, X_{f(σ)}·), whenever σ' ≤ σ. Put

$$f^*(X)=Q/\sim$$
 .

Mirrored spaces The reflection group trick Pullbacks

When is $f^*(X)$ aspherical?

Recall the three conditions

- X is aspherical (ie, \tilde{X} is contractible),
- 2 For each $\sigma \in N(\widetilde{\mathcal{M}}), \widetilde{X}_{\sigma}$ is acyclic.
- $N(\widetilde{\mathcal{M}})$ is a flag cx.

Theorem

Suppose conditions 1,2,3 +

L is a flag cx.

Then $f^*(X)$ is aspherical.

Introduction Mirrored spaces Polyhedral products The reflection group trick Corners Pullbacks

Sketch.

Let *Y* be cubical cx associated to $N(\widetilde{\mathcal{M}})$. *L* a flag cx \implies $f^*(Y)$ is locally CAT(0). Moreover, $f^*(\widetilde{X})$ is homotopy equivalent to $f^*(Y)$; hence, univ cover of $f^*(\widetilde{X})$ is contractible.

Remark

If X is a mfld with corners and L is a triangulation of sphere (or generalized homology sphere) then $f^*(X)$ is a mfld. So, these methods can be used to construct aspherical mflds.

Introduction Polyhedral products Corners Pullbacks

Right angularity, flag complexes, asphericity. arXiv:1002.2564.