Contracting Boundaries of CAT(0) Spaces

Ruth Charney

Dubrovnik, July 2011

Ruth Charney ()

→ ∃ → Dubrovnik, July 2011 1 / 18

Motivation

X = complete hyperbolic metric space. Visual boundary of X:

$$\partial X = \{ \text{geodesic rays } \alpha : [0, \infty) \to X \} / \sim$$

where $\alpha \sim \beta$ if they have bounded Hausdorff distance.

Topology on ∂X :

$$N(\alpha, r, \epsilon) = \{ \beta \mid d(\alpha(t), \beta(t)) < \epsilon, 0 \le t < r \}$$

Properties of ∂X , X hyperbolic

- If X is proper, then $X \cup \partial X$ is compact.
- Quasi-isometries $f : X \to Y$ induce homeomorphisms $\partial f : \partial X \to \partial Y$. In particular, ∂G is well-defined for a hyperbolic group G.
- ∂X is a visibility space, i.e. for any two points x, y ∈ ∂X, ∃ a geodesic γ with γ(∞) = x and γ(−∞) = y.
- Nice dynamics: hyperbolic isometries $g \in Isom(X)$ act on ∂X with "north-south dynamics."

Now suppose X is a complete CAT(0) space.

Can define ∂X in the same way, but properties are not as nice.

Now suppose X is a complete CAT(0) space.

Can define ∂X in the same way, but properties are not as nice.

- If X is proper, then $X \cup \partial X$ is compact.
- Quasi-isometries f : X → Y do NOT necessarily induce homeomorphisms ∂f : ∂X → ∂Y, so ∂G is not well-defined for a CAT(0) group G (Croke-Kleiner).
- ∂X is a NOT a visibility space (eg. $X = \mathbb{R}^2$).
- Dynamics of $g \in Isom(X)$ acting on ∂X ???

- 3

A B M A B M

Now suppose X is a complete CAT(0) space.

Can define ∂X in the same way, but properties are not as nice.

- If X is proper, then $X \cup \partial X$ is compact.
- Quasi-isometries f : X → Y do NOT necessarily induce homeomorphisms ∂f : ∂X → ∂Y, so ∂G is not well-defined for a CAT(0) group G (Croke-Kleiner).
- ∂X is a NOT a visibility space (eg. $X = \mathbb{R}^2$).
- Dynamics of $g \in Isom(X)$ acting on ∂X ???

Certain isometries of a CAT(0) space X behave nicely. These are known as rank one isometries.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

Rank one isometries

Definition (Ballmann-Brin)

A geodesic α is rank one if it does not bound a half-flat. An isometry $g \in Isom(X)$ is rank one if it has a rank one axis.

Rank one isometries

Definition (Ballmann-Brin)

A geodesic α is rank one if it does not bound a half-flat. An isometry $g \in Isom(X)$ is rank one if it has a rank one axis.

Ballmann-Brin-Eberlein, Schroeder-Buyalo, Kapovich-Leeb, Drutu-Moses-Sapir, Bestvina-Fujiwara, Hamenstadt, Sageev-Caprace,...

Rank one isometries

Definition (Ballmann-Brin)

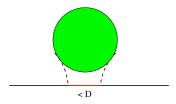
A geodesic α is rank one if it does not bound a half-flat. An isometry $g \in Isom(X)$ is rank one if it has a rank one axis.

Ballmann-Brin-Eberlein, Schroeder-Buyalo, Kapovich-Leeb, Drutu-Moses-Sapir, Bestvina-Fujiwara, Hamenstadt, Sageev-Caprace,...

General philosophy: Rank one isometries of a CAT(0) space behave nicely because their axes behave like geodesics in a hyperbolic space.

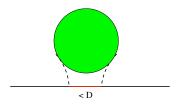
Definition (Bestvina-Fujiwara)

A geodesic α is D-contracting if for any ball *B* disjoint from α , the projection of *B* on α has diameter at most *D*. A geodesic is contracting if it is D-contracting for some D.

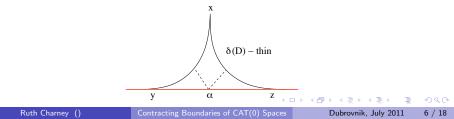


Definition (Bestvina-Fujiwara)

A geodesic α is D-contracting if for any ball *B* disjoint from α , the projection of *B* on α has diameter at most *D*. A geodesic is contracting if it is D-contracting for some D.



Contracting geodesics satisfy a thin triangle property.



Theorem (B-F)

If X proper CAT(0) space and α is periodic, then α is rank one \Leftrightarrow it is contracting.

3

< 4 → <

Theorem (B-F)

If X proper CAT(0) space and α is periodic, then α is rank one \Leftrightarrow it is contracting.

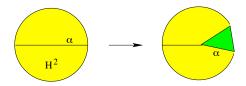
For non-periodic geodesics, α rank one $\Rightarrow \alpha$ contracting.

Theorem (B-F)

If X proper CAT(0) space and α is periodic, then α is rank one \Leftrightarrow it is contracting.

For non-periodic geodesics, α rank one $\Rightarrow \alpha$ contracting.

Examples:

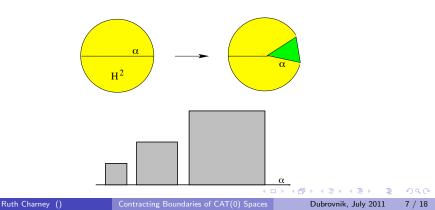


Theorem (B-F)

If X proper CAT(0) space and α is periodic, then α is rank one \Leftrightarrow it is contracting.

For non-periodic geodesics, α rank one $\Rightarrow \alpha$ contracting.

Examples:



Back to boundaries:

- ∢ ≣ →

< 🗇 🕨

э

Back to boundaries:

Consider the subspace of ∂X consisting of all contracting rays.

Define the contracting boundary of X

$$\partial_c X = \{ \text{contracting rays } \alpha : [0, \infty) \to X \} / \sim$$

with the subspace topology $\partial_c X \subset \partial X$.

Back to boundaries:

Consider the subspace of ∂X consisting of all contracting rays.

Define the contracting boundary of X

$$\partial_c X = \{ \text{contracting rays } \alpha : [0, \infty) \to X \} / \sim$$

with the subspace topology $\partial_c X \subset \partial X$.

Examples

(1) If X is hyperbolic, then $\partial_c X = \partial X$.

Back to boundaries:

Consider the subspace of ∂X consisting of all contracting rays.

Define the contracting boundary of X

$$\partial_c X = \{ \text{contracting rays } \alpha : [0, \infty) \to X \} / \sim$$

with the subspace topology $\partial_c X \subset \partial X$.

Examples

(1) If X is hyperbolic, then $\partial_c X = \partial X$.

(2)
$$X =$$
 first example above, the $\partial_c X = \partial H^2 \setminus \{pt\} \cong (0,1).$

Back to boundaries:

Consider the subspace of ∂X consisting of all contracting rays.

Define the contracting boundary of X

$$\partial_c X = \{ \text{contracting rays } \alpha : [0, \infty) \to X \} / \sim$$

with the subspace topology $\partial_c X \subset \partial X$.

Examples

- (1) If X is hyperbolic, then $\partial_c X = \partial X$.
- (2) $X = \text{first example above, the } \partial_c X = \partial H^2 \setminus \{pt\} \cong (0,1).$
- (3) If $X = X_1 \times X_2$, then $\partial_c X = \emptyset$

- 3

< 回 > < 三 > < 三 >

This subspace, $\partial_c X$, should behave like a hyperbolic boundary. Properties of ∂X , for X hyperbolic:

- If X is proper, then $X \cup \partial X$ is compact.
- Quasi-isometries $f : X \to Y$ induce homeomorphisms $\partial f : \partial X \to \partial Y$. In particular, ∂G is well-defined for a hyperbolic group G.
- ∂X is a visibility space, i.e. for any two points $x, y \in \partial X$, \exists a geodesic γ with $\gamma(\infty) = x$ and $\gamma(-\infty) = y$.
- hyperbolic isometries $g \in Isom(X)$ act on ∂X with "north-south dynamics."
- Q: Are the analogous true for $\partial_c X$ of a CAT(0) space?

- 31

4 E N 4 E N

Properties of $\partial_c X$

Theorem

Suppose X is proper. The subspace of D-contracting rays is compact, hence $\partial_c X$ is σ -compact (a countable union of compact subspaces).

Proof: Follows easily from lemmas in Bestvina-Fujiwara.

Properties of $\partial_c X$

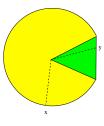
Theorem

Suppose X is proper. The subspace of D-contracting rays is compact, hence $\partial_c X$ is σ -compact (a countable union of compact subspaces).

Proof: Follows easily from lemmas in Bestvina-Fujiwara.

Theorem

Let $x \in \partial_c X$ and $y \in \partial X$, then there exists a geodesic γ in X such that $\gamma(\infty) = x$ and $\gamma(-\infty) = y$. In particular, $\partial_c X$ is a visibility space.



Properties of $\partial_c X$

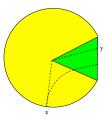
Theorem

Suppose X is proper. The subspace of D-contracting rays is compact, hence $\partial_c X$ is σ -compact (a countable union of compact subspaces).

Proof: Follows easily from lemmas in Bestvina-Fujiwara.

Theorem

Let $x \in \partial_c X$ and $y \in \partial X$, then there exists a geodesic γ in X such that $\gamma(\infty) = x$ and $\gamma(-\infty) = y$. In particular, $\partial_c X$ is a visibility space.



Main Theorem

Theorem

A quasi-isometry of CAT(0) spaces $f : X \to Y$ induces a homeomorphism $\partial f : \partial_c X \to \partial_c Y$. In particular, $\partial_c G$ is well-defined for a CAT(0) group G.

Main Theorem

Theorem

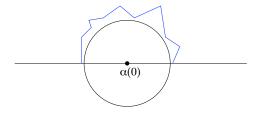
A quasi-isometry of CAT(0) spaces $f : X \to Y$ induces a homeomorphism $\partial f : \partial_c X \to \partial_c Y$. In particular, $\partial_c G$ is well-defined for a CAT(0) group G.

Idea of proof. Recall, a ray α is D-contracting if for any ball *B* disjoint from α , the projection of *B* on α has diameter at most *D*.

Problem: projection does not behave nicely under quasi-isometry. Need a characterization of contracting ray which does.

Divergence: For α a (bi-infinite) geodesic,

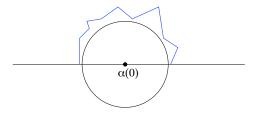
 $div_{\alpha}(r) = \inf\{\ell(p) \mid p \text{ a path in } X \setminus B(r, \alpha(0)) \text{ from } \alpha(-r) \text{ to } \alpha(r)\}$



- 一司

Divergence: For α a (bi-infinte) geodesic,

 $div_{\alpha}(r) = \inf\{\ell(p) \mid p \text{ a path in } X \setminus B(r, \alpha(0)) \text{ from } \alpha(-r) \text{ to } \alpha(r)\}$

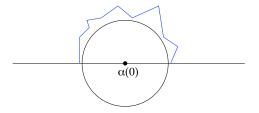


Lower divergence: For α a geodesic ray, define

$$\underline{div}_{\alpha}(r) = \inf \{ \ell(p) \mid p \text{ a path in } X \setminus B(r, \alpha(t)) \text{ from} \\ \alpha(t-r) \text{ to } \alpha(t+r), t \in [r, \infty) \}$$

Divergence: For α a (bi-infinte) geodesic,

 $div_{\alpha}(r) = \inf\{\ell(p) \mid p \text{ a path in } X \setminus B(r, \alpha(0)) \text{ from } \alpha(-r) \text{ to } \alpha(r)\}$



Lower divergence: For α a geodesic ray, define

$$\underline{div}_{lpha}(r) = \inf\{\ell(p) \mid p \text{ a path in } X \setminus B(r, lpha(t)) \text{ from} \ lpha(t-r) \text{ to } lpha(t+r), t \in [r, \infty)\}$$

Remark

These are different even for a bi-infinite geodesics. Eg, if $X = \mathbb{R}^2 \vee \mathbb{R}^2$ and α passes through 0, then $div_{\alpha}(r) = \infty$, while $\underline{div}_{\alpha}(r) = \pi r$.

Lemma

For a ray α in X, TFAE

- \underline{div}_{α} is super-linear.
- 2 \underline{div}_{α} is at least quadratic.
- \bigcirc α is contracting.

< ∃⇒

Lemma

For a ray α in X, TFAE

- div α is super-linear.
- 2 \underline{div}_{α} is at least quadratic.
- $\odot \alpha$ is contracting.

Theorem

A quasi-isometry of CAT(0) spaces $f : X \rightarrow Y$ induces a homeomorphism $\partial f: \partial_c X \to \partial_c Y$. In particular, $\partial_c G$ is well-defined for a CAT(0) group G.

14 / 18

- N

Theorem

A quasi-isometry of CAT(0) spaces $f : X \rightarrow Y$ induces a homeomorphism $\partial f: \partial_c X \to \partial_c Y$. In particular, $\partial_c G$ is well-defined for a CAT(0) group G.

< 🗇 🕨

3

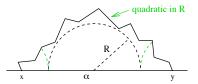
15 / 18

Theorem

A quasi-isometry of CAT(0) spaces $f : X \to Y$ induces a homeomorphism $\partial f : \partial_c X \to \partial_c Y$. In particular, $\partial_c G$ is well-defined for a CAT(0) group G.

Proof: Let α be a contracting ray in X.

Step 1: Show $f(\alpha)$ stays bounded distance from some geodesic ray β in Y.

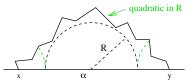


Theorem

A quasi-isometry of CAT(0) spaces $f : X \to Y$ induces a homeomorphism $\partial f : \partial_c X \to \partial_c Y$. In particular, $\partial_c G$ is well-defined for a CAT(0) group G.

Proof: Let α be a contracting ray in X.

Step 1: Show $f(\alpha)$ stays bounded distance from some geodesic ray β in Y.



Step 2: Show $\underline{div}_{\beta}(r) \asymp \underline{div}_{\alpha}(r)$, hence α contracting $\Rightarrow \beta$ contracting.

Behrstock-C: Studied divergence for right-angled Artin group (RAAG). Introduced notion of "strongly separated walls" and showed:

lpha has quadratic divergence \Leftrightarrow

 $\boldsymbol{\alpha}$ crosses an infinite sequence of strongly separated walls.

Behrstock-C: Studied divergence for right-angled Artin group (RAAG). Introduced notion of "strongly separated walls" and showed:

 α has quadratic divergence \Leftrightarrow α crosses an infinite sequence of strongly separated walls.

Definition

Two walls H_1 , H_2 in a CAT(0) cube complex X are strongly separated if $H_1 \cap H_2 = \emptyset$ and no wall of X crosses both H_1 and H_2

16 / 18

Behrstock-C: Studied divergence for right-angled Artin group (RAAG). Introduced notion of "strongly separated walls" and showed:

 $\alpha \text{ has quadratic divergence} \Leftrightarrow \\ \alpha \text{ crosses an infinite sequence of strongly separated walls.}$

Definition

Two walls H_1 , H_2 in a CAT(0) cube complex X are strongly separated if $H_1 \cap H_2 = \emptyset$ and no wall of X crosses both H_1 and H_2

Caprace-Sageev: in very general CAT(0) cube complexes:

X has a rank one isometry \Leftrightarrow X has a pair of strongly separated walls.

First guess: A ray α is contracting \Leftrightarrow it crosses an infinite sequence H_1, H_2, H_3, \ldots of strongly separated walls.

First guess: A ray α is contracting \Leftrightarrow it crosses an infinite sequence H_1, H_2, H_3, \ldots of strongly separated walls.

Not quite!

17 / 18

First guess: A ray α is contracting \Leftrightarrow it crosses an infinite sequence H_1, H_2, H_3, \ldots of strongly separated walls.

Not quite!

Too weak: if distance between H_i and H_{i+1} is allowed to increase, α may stay longer and longer in a flat. So need $d(h_i, h_{i+1}) < C$ where $h_i = \alpha \cap H_i$.

- 3

First guess: A ray α is contracting \Leftrightarrow it crosses an infinite sequence H_1, H_2, H_3, \ldots of strongly separated walls.

Not quite!

Too weak: if distance between H_i and H_{i+1} is allowed to increase, α may stay longer and longer in a flat. So need $d(h_i, h_{i+1}) < C$ where $h_i = \alpha \cap H_i$.

Too strong: suppose α lies in a wall *H*. Then no two walls crossed by α are strongly separated.

Definition

Two walls H_1, H_2 in a CAT(0) cube complex X are k-separated if $H_1 \cap H_2 = \emptyset$ and at most k walls of X cross both H_1 and H_2 .

< 回 ト < 三 ト < 三 ト

Definition

Two walls H_1 , H_2 in a CAT(0) cube complex X are k-separated if $H_1 \cap H_2 = \emptyset$ and at most k walls of X cross both H_1 and H_2 .

Assume $\exists n \text{ such that at most } n \text{ walls intersect the star of any vertex in } X$. (Probably stronger than necessary.)

Theorem

X as above. Then a geodesic ray α in X is contracting $\Leftrightarrow \exists C > 0, k \in \mathbb{N}$, such that any segment of α of length C crosses a pair of k-separated walls.

Definition

Two walls H_1 , H_2 in a CAT(0) cube complex X are k-separated if $H_1 \cap H_2 = \emptyset$ and at most k walls of X cross both H_1 and H_2 .

Assume $\exists n \text{ such that at most } n \text{ walls intersect the star of any vertex in } X$. (Probably stronger than necessary.)

Theorem

X as above. Then a geodesic ray α in X is contracting $\Leftrightarrow \exists C > 0, k \in \mathbb{N}$, such that any segment of α of length C crosses a pair of k-separated walls.

Question

For CAT(0) cube complexes, what is the relation between $\partial_c X$ and the Poisson boundary described in Sageev's talk?

イロト 人間ト イヨト イヨト

18 / 18