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Motivation

X = complete hyperbolic metric space.

Visual boundary of X:

0X = {geodesic rays « : [0,00) — X}/ ~

where a ~ ( if they have bounded Hausdorff distance.

Topology on 0.X:

N(a,r,e) ={8 | d(a(t),[(t)) <e,0<t<r}
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Properties of 9X, X hyperbolic

o If X is proper, then X U 0X is compact.

@ Quasi-isometries f : X — Y induce homeomorphisms 9f : 90X — Y.
In particular, OG is well-defined for a hyperbolic group G.

@ 0X is a visibility space, i.e. for any two points x,y € 0X, 3 a
geodesic v with y(c0) = x and y(—o0) = y.

@ Nice dynamics: hyperbolic isometries g € Isom(X) act on 9X with
“north-south dynamics.”
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Now suppose X is a complete CAT(0) space.

Can define 9X in the same way, but properties are not as nice.
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Now suppose X is a complete CAT(0) space.
Can define X in the same way, but properties are not as nice.
o If X is proper, then X U dX is compact.

@ Quasi-isometries f : X — Y do NOT necessarily induce
homeomorphisms 9f : 90X — 3Y/, so JG is not well-defined for a
CAT(0) group G (Croke-Kleiner).

@ 0X is a NOT a visibility space (eg. X = R?).

@ Dynamics of g € Isom(X) acting on 9X 777
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Now suppose X is a complete CAT(0) space.
Can define X in the same way, but properties are not as nice.
o If X is proper, then X U dX is compact.

@ Quasi-isometries f : X — Y do NOT necessarily induce
homeomorphisms 9f : 90X — 3Y/, so JG is not well-defined for a
CAT(0) group G (Croke-Kleiner).

@ 0X is a NOT a visibility space (eg. X = R?).

@ Dynamics of g € Isom(X) acting on 9X 777

Certain isometries of a CAT(0) space X behave nicely. These are known
as rank one isometries.
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Rank one isometries

Definition (Ballmann-Brin)

A geodesic « is rank one if it does not bound a half-flat. An isometry
g € Isom(X) is rank one if it has a rank one axis.
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Rank one isometries

Definition (Ballmann-Brin)

A geodesic « is rank one if it does not bound a half-flat. An isometry
g € Isom(X) is rank one if it has a rank one axis.

Ballmann-Brin-Eberlein, Schroeder-Buyalo, Kapovich-Leeb,
Drutu-Moses-Sapir, Bestvina-Fujiwara, Hamenstadt, Sageev-Caprace,. ..
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Rank one isometries

Definition (Ballmann-Brin)

A geodesic « is rank one if it does not bound a half-flat. An isometry
g € Isom(X) is rank one if it has a rank one axis.

Ballmann-Brin-Eberlein, Schroeder-Buyalo, Kapovich-Leeb,
Drutu-Moses-Sapir, Bestvina-Fujiwara, Hamenstadt, Sageev-Caprace,. ..

General philosophy: Rank one isometries of a CAT(0) space behave nicely
because their axes behave like geodesics in a hyperbolic space.
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Definition (Bestvina-Fujiwara)

A geodesic « is D-contracting if for any ball B disjoint from «, the

projection of B on « has diameter at most D. A geodesic is contracting if
it is D-contracting for some D.
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Definition (Bestvina-Fujiwara)

A geodesic « is D-contracting if for any ball B disjoint from «, the
projection of B on « has diameter at most D. A geodesic is contracting if

it is D-contracting for some D.

Contracting geodesics satisfy a thin triangle property.

X

3(D) - thin

y a z
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Clearly, « contracting = « is rank one.

Theorem (B-F)

If X proper CAT(0) space and « is periodic, then « is rank one < it is
contracting.
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Clearly, « contracting = « is rank one.
Theorem (B-F)

If X proper CAT(0) space and « is periodic, then « is rank one < it is
contracting.

For non-periodic geodesics, a rank one #- « contracting.
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Clearly, « contracting = « is rank one.

Theorem (B-F)

If X proper CAT(0) space and « is periodic, then « is rank one < it is
contracting.

For non-periodic geodesics, a rank one #- « contracting.

Examples:

(o3
\}f/
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Clearly, « contracting = « is rank one.
Theorem (B-F)

If X proper CAT(0) space and « is periodic, then « is rank one < it is
contracting.

For non-periodic geodesics, a rank one #- « contracting.

Examples:

(o3
\1_1_2/

[ ] .
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Contracting Boundary

Back to boundaries:
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Contracting Boundary

Back to boundaries:
Consider the subspace of 90X consisting of all contracting rays.

Define the contracting boundary of X

0. X = {contracting rays « : [0,00) — X}/ ~

with the subspace topology 9.X C 9X.
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Contracting Boundary
Back to boundaries:
Consider the subspace of X consisting of all contracting rays.
Define the contracting boundary of X

0cX = {contracting rays a : [0,00) — X}/ ~
with the subspace topology 9.X C 9X.

Examples
(1) If X is hyperbolic, then 9. X = 0X.
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Contracting Boundary

Back to boundaries:
Consider the subspace of 90X consisting of all contracting rays.

Define the contracting boundary of X

0cX = {contracting rays a : [0,00) — X}/ ~
with the subspace topology 9.X C 9X.

Examples
(1) If X is hyperbolic, then 9. X = 0X.

(2) X = first example above, the 9.X = dH?\{pt} = (0,1).
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Contracting Boundary

Back to boundaries:
Consider the subspace of 90X consisting of all contracting rays.

Define the contracting boundary of X

0cX = {contracting rays a : [0,00) — X}/ ~

with the subspace topology 9.X C 9X.

Examples

(1) If X is hyperbolic, then 9. X = 0X.

(2) X = first example above, the 9.X = dH?\{pt} = (0,1).
(3) If X = Xy x Xo, then 9X = 0
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This subspace, 0.X, should behave like a hyperbolic boundary.
Properties of 90X, for X hyperbolic:
o If X is proper, then X U 0X is compact.

@ Quasi-isometries f : X — Y induce homeomorphisms 0f : 90X — 9Y.
In particular, OG is well-defined for a hyperbolic group G.

@ 0X is a visibility space, i.e. for any two points x,y € 0X, d a
geodesic v with y(c0) = x and y(—o0) = y.

@ hyperbolic isometries g € Isom(X) act on 9X with “north-south
dynamics.”

Q: Are the analogous true for 9.X of a CAT(0) space?
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Properties of 0.X

Theorem

Suppose X is proper. The subspace of D-contracting rays is compact,
hence 0.X is o-compact (a countable union of compact subspaces).

Proof: Follows easily from lemmas in Bestvina-Fujiwara.
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Properties of 0.X

Theorem

Suppose X is proper. The subspace of D-contracting rays is compact,
hence 0.X is o-compact (a countable union of compact subspaces).

Proof: Follows easily from lemmas in Bestvina-Fujiwara.

Theorem

Let x € 0. X and y € X, then there exists a geodesic vy in X such that
v(o0) = x and y(—o0) = y. In particular, . X is a visibility space.

X
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Properties of 0.X

Theorem

Suppose X is proper. The subspace of D-contracting rays is compact,
hence 0.X is o-compact (a countable union of compact subspaces).

Proof: Follows easily from lemmas in Bestvina-Fujiwara.

Theorem

Let x € 0. X and y € X, then there exists a geodesic vy in X such that
v(o0) = x and y(—o0) = y. In particular, . X is a visibility space.
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Main Theorem

Theorem

A quasi-isometry of CAT(0) spaces f : X — Y induces a homeomorphism
Of : 90X — 0cY. In particular, 0. G is well-defined for a CAT(0) group G.
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Main Theorem

Theorem

A quasi-isometry of CAT(0) spaces f : X — Y induces a homeomorphism
Of : 90X — 0cY. In particular, 0. G is well-defined for a CAT(0) group G.

Idea of proof. Recall, a ray « is D-contracting if for any ball B disjoint
from «, the projection of B on « has diameter at most D.

Problem: projection does not behave nicely under quasi-isometry. Need a
characterization of contracting ray which does.
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Divergence: For « a (bi-infinte) geodesic,

dive(r) = inf{l(p) | p a path in X\B(r,a(0)) from a(—r) to a(r)}

h
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Divergence: For « a (bi-infinte) geodesic,

dive(r) = inf{l(p) | p a path in X\B(r,a(0)) from a(—r) to a(r)}

Lower divergence: For o a geodesic ray, define
div, (r) =inf{l(p) | p a path in X\B(r,«(t)) from
a(t—r)toaft+r),te[r,o0)}
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Divergence: For « a (bi-infinte) geodesic,

dive(r) = inf{l(p) | p a path in X\B(r,a(0)) from a(—r) to a(r)}

Lower divergence: For o a geodesic ray, define

div,,(r) =inf{f(p) | p a path in X\B(r,«(t)) from
af(t—r)toa(t+r),t€[r,00)}

Remark

These are different even for a bi-infinite geodesics. Eg, if X = R? V R? and
a passes through 0, then div,(r) = oo, while div, (r) = mr.
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Lemma
For a ray o in X, TFAE

Q div,, is super-linear.

@ div,, is at least quadratic.

© « is contracting.
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Lemma
For a ray o in X, TFAE

Q div,, is super-linear.

@ div,, is at least quadratic.

© « is contracting.

Theorem

A quasi-isometry of CAT(0) spaces f : X — Y induces a homeomorphism
Of : 0cX — 0cY. In particular, 0.G is well-defined for a CAT(0) group G.
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Theorem

A quasi-isometry of CAT(0) spaces f : X — Y induces a homeomorphism
Of : 0cX — 0 Y. In particular, 0.G is well-defined for a CAT(0) group G.
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Theorem

A quasi-isometry of CAT(0) spaces f : X — Y induces a homeomorphism
Of : 0cX — 0 Y. In particular, 0.G is well-defined for a CAT(0) group G.

Proof: Let a be a contracting ray in X.

Step 1: Show f(«) stays bounded distance from some geodesic ray 3 in Y.

_ quadratic in R
P
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Theorem

A quasi-isometry of CAT(0) spaces f : X — Y induces a homeomorphism
Of : 0. X — 0cY. In particular, 0.G is well-defined for a CAT(0) group G.

Proof: Let a be a contracting ray in X.

Step 1: Show f(«) stays bounded distance from some geodesic ray 3 in Y.

_ quadratic in R

Step 2: Show div(r) = div,(r), hence o contracting = 3 contracting.

Ruth Charney () Contracting Boundaries of CAT(0) Spaces Dubrovnik, July 2011 15 / 18



Contracting rays in CAT(0) cubical complexes
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Contracting rays in CAT(0) cubical complexes

Behrstock-C: Studied divergence for right-angled Artin group (RAAG).
Introduced notion of “strongly separated walls” and showed:

« has quadratic divergence <
« crosses an infinite sequence of strongly separated walls.
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Contracting rays in CAT(0) cubical complexes

Behrstock-C: Studied divergence for right-angled Artin group (RAAG).
Introduced notion of “strongly separated walls” and showed:

« has quadratic divergence <
« crosses an infinite sequence of strongly separated walls.

Definition
Two walls Hy, Hp in a CAT(0) cube complex X are strongly separated if
Hi N Hy = 0 and no wall of X crosses both H; and Hy
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Contracting rays in CAT(0) cubical complexes

Behrstock-C: Studied divergence for right-angled Artin group (RAAG).
Introduced notion of “strongly separated walls” and showed:

« has quadratic divergence <
« crosses an infinite sequence of strongly separated walls.

Definition
Two walls Hy, Hp in a CAT(0) cube complex X are strongly separated if
Hi N Hy = 0 and no wall of X crosses both H; and Hy

Caprace-Sageev: in very general CAT(0) cube complexes:

X has a rank one isometry <
X has a pair of strongly separated walls.
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Want to characterize contracting rays in terms of strongly separated walls.

First guess: A ray « is contracting< it crosses an infinite sequence
Hi, Ho, Hs, ... of strongly separated walls.
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Want to characterize contracting rays in terms of strongly separated walls.

First guess: A ray « is contracting< it crosses an infinite sequence
Hi, Ho, Hs, ... of strongly separated walls.

Not quite!
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Want to characterize contracting rays in terms of strongly separated walls.

First guess: A ray « is contracting< it crosses an infinite sequence
Hi, Ho, Hs, ... of strongly separated walls.

Not quite!

Too weak: if distance between H; and H;,1 is allowed to increase, a may
stay longer and longer in a flat. So need d(hj, hi+1) < C where
h; = anH,.
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Want to characterize contracting rays in terms of strongly separated walls.

First guess: A ray « is contracting< it crosses an infinite sequence
Hi, Ho, Hs, ... of strongly separated walls.

Not quite!

Too weak: if distance between H; and H;,1 is allowed to increase, a may
stay longer and longer in a flat. So need d(hj, hi+1) < C where
h; = anH,.

Too strong: suppose « lies in a wall H. Then no two walls crossed by «
are strongly separated.
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Definition
Two walls Hy, Hp in a CAT(0) cube complex X are k-separated if
Hi N H> = 0 and at most k walls of X cross both H; and Hb>.
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Definition
Two walls Hy, Hp in a CAT(0) cube complex X are k-separated if
Hi N H> = 0 and at most k walls of X cross both H; and Hb>.

Assume dn such that at most n walls intersect the star of any vertex in X.
(Probably stronger than necessary.)

Theorem
X as above. Then a geodesic ray o in X is contracting < 3C > 0,k € N,
such that any segment of « of length C crosses a pair of k-separated walls.
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Definition
Two walls Hy, Hp in a CAT(0) cube complex X are k-separated if
Hi N H> = 0 and at most k walls of X cross both H; and Hb>.

Assume dn such that at most n walls intersect the star of any vertex in X.
(Probably stronger than necessary.)

Theorem
X as above. Then a geodesic ray o in X is contracting < 3C > 0,k € N,
such that any segment of « of length C crosses a pair of k-separated walls.

Question

For CAT(0) cube complexes, what is the relation between 0.X and the
Poisson boundary described in Sageev's talk?
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