HYPERSPACES OF COMPACT CONVEX SETS

Sergey Antonyan and Natalia Jonard Pérez

National University of Mexico

Dubrovnik VII - Geometric Topology

Dubrovnik, Croatia

June 26, 2011

- Motivation
- 2 Affine group action on $cb(\mathbb{R}^n)$
- Global Slices
- The John ellipsoid
- **5** Computing J(n)
- 6 The Banach-Mazur compacta
- **7** Equivariant conic structure of $cc(\mathbb{R}^n)$
- 8 Orbit spaces of $cb(\mathbb{R}^n)$

Some Motivation

For every $n \ge 1$, lets denote:

- $cc(\mathbb{R}^n)$ the hyperspace of all compact convex subsets of \mathbb{R}^n ,
- $cb(\mathbb{R}^n)$ the hyperspace of all compact convex bodies of \mathbb{R}^n ,

equipped with the Hausdorff metric topology:

$$d_H(A, B) = \max \left\{ \sup_{b \in B} d(b, A), \sup_{a \in A} d(a, B) \right\},$$

where d is the Euclidean metric and $d(b, A) = \inf\{d(b, a) \mid a \in A\}$.

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

• Question. What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earliear in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003]

$$\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}$$
.

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

• **Question.** What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earliear in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

$$\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}$$

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

• **Question.** What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earliear in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003]

$$\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}$$

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

• **Question.** What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earliear in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

$$\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}$$

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

• **Question.** What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earliear in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

$$\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}$$
.

Affine group action on $cb(\mathbb{R}^n)$

Our approach is largely based on the study of the natural affine group action on $cb(\mathbb{R}^n)$.

Aff(n) is the group of all nonsingular affine transformations of \mathbb{R}^n . $g \in \text{Aff}(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in GL(n)$ and v is a fixed vector.

Aff(n) acts on $cb(\mathbb{R}^n)$ by the following rule:

$$Aff(n) \times cb(\mathbb{R}^n) \to cb(\mathbb{R}^n)$$
$$(g, A) \to gA = \{g(a) \mid a \in A\}$$

Affine group action on $cb(\mathbb{R}^n)$

Our approach is largely based on the study of the natural affine group action on $cb(\mathbb{R}^n)$.

Aff(n) is the group of all nonsingular affine transformations of \mathbb{R}^n . $g \in \text{Aff}(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in GL(n)$ and v is a fixed vector.

Aff(n) acts on $cb(\mathbb{R}^n)$ by the following rule:

$$Aff(n) \times cb(\mathbb{R}^n) \to cb(\mathbb{R}^n)$$
$$(g, A) \to gA = \{g(a) \mid a \in A\}$$

Affine group action on $cb(\mathbb{R}^n)$

Our approach is largely based on the study of the natural affine group action on $cb(\mathbb{R}^n)$.

Aff(n) is the group of all nonsingular affine transformations of \mathbb{R}^n . $g \in \text{Aff}(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in GL(n)$ and v is a fixed vector.

Aff(n) acts on $cb(\mathbb{R}^n)$ by the following rule:

$$\mathsf{Aff}(n) \times cb(\mathbb{R}^n) \to cb(\mathbb{R}^n)$$
$$(g,A) \to gA = \{g(a) \mid a \in A\}.$$

(A. Macbeath, 1951). The orbit space $cb(\mathbb{R}^n)/\operatorname{Aff}(n)$ is a compact metric space.

Theorem

The action of Aff(n) on $cb(\mathbb{R}^n)$ is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group G on a Tychonoff space X is proper if every point $x \in X$ has a neighborhood V_x such that for any point $y \in X$ there is a neighborhood V_y with the property that the transporter from V_x to V_y

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

has compact closure in G.

Theorem

The action of Aff(n) on $cb(\mathbb{R}^n)$ is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group G on a Tychonoff space X is proper if every point $x \in X$ has a neighborhood V_x such that for any point $y \in X$ there is a neighborhood V_y with the property that the transporter from V_x to V_y

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

has compact closure in G.

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

X X

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

Definition

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

Definition

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

Definition

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

Definition

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

Definition

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- *S* is *H*-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

Theorem (Palais, 1961)

Let G be a Lie group, X be a proper G-space and $x \in X$. Then there exists a G-invariant neighborhood U of x which admits a global G_x -slice S for U.

Equivalent form: there exists a *G*-map

$$f: U \to G/G_X$$
 such that $f^{-1}(eG_X) = S$

If, in addition, G is a Lie group having finitely many connected components, then a maximal compact subgroup $K \subset G$ exists. In this case $gG_Xg^{-1} \subset K$, and hence, there is a G-map

$$q: G/G_X \to G/K$$
.

Theorem (Palais, 1961)

Let G be a Lie group, X be a proper G-space and $x \in X$. Then there exists a G-invariant neighborhood U of x which admits a global G_x -slice S for U.

Equivalent form: there exists a *G*-map

$$f:U o G/G_{\!\scriptscriptstyle X}$$
 such that $f^{-1}(eG_{\!\scriptscriptstyle X})=S.$

If, in addition, G is a Lie group having finitely many connected components, then a maximal compact subgroup $K \subset G$ exists. In this case $gG_xg^{-1} \subset K$, and hence, there is a G-map

$$q: G/G_X \to G/K$$
.

Theorem (Palais, 1961)

Let G be a Lie group, X be a proper G-space and $x \in X$. Then there exists a G-invariant neighborhood U of x which admits a global G_x -slice S for U.

Equivalent form: there exists a *G*-map

$$f:U o G/G_{\scriptscriptstyle X}$$
 such that $f^{-1}(eG_{\scriptscriptstyle X})=S.$

If, in addition, G is a Lie group having finitely many connected components, then a maximal compact subgroup $K \subset G$ exists. In this case $gG_xg^{-1} \subset K$, and hence, there is a G-map

$$q: G/G_X \rightarrow G/K$$
.

Consider the composition:

The inverse image $Q = F^{-1}(eK)$ is a K-slice for U.

This K-slices can be pasted together to obtain a global K-slice of X.

Theorem (Abels, 1974)

Let G be a Lie group having finitely many connected components, K a maximal compact subgroup and X a proper G-space. If the orbit space $X \mid G$ is paracompact then

- (1) X admits a global K-slice S.
- (2) X is K-equivariantly homeomorphic to the product $S \times G/K$.

This K-slices can be pasted together to obtain a global K-slice of X.

Theorem (Abels, 1974)

Let G be a Lie group having finitely many connected components, K a maximal compact subgroup and X a proper G-space. If the orbit space X/G is paracompact then

- (1) X admits a global K-slice S.
- (2) X is K-equivariantly homeomorphic to the product $S \times G/K$.

- Aff(n) has two connected components.
- O(n), the orthogonal group, is a maximal compact subgroup of Aff(n).
- Aff(n) acts properly on $cb(\mathbb{R}^n)$.
- The orbit space $cb(\mathbb{R}^n)/\operatorname{Aff}(n)$ is metrizable and compact.

Hence, there exists a global O(n)-slice S for $cb(\mathbb{R}^n)$ and

$$cb(\mathbb{R}^n) \cong S \times Aff(n)/O(n)$$

- Aff(n) has two connected components.
- O(n), the orthogonal group, is a maximal compact subgroup of Aff(n).
- Aff(n) acts properly on $cb(\mathbb{R}^n)$.
- The orbit space $cb(\mathbb{R}^n)/\operatorname{Aff}(n)$ is metrizable and compact.

Hence, there exists a global O(n)-slice S for $cb(\mathbb{R}^n)$ and

$$cb(\mathbb{R}^n) \cong S \times Aff(n)/O(n).$$

$Aff(n)/O(n) \cong \mathbb{R}^n \times GL(n)/O(n).$

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$$GL(n)/O(n)$$
 is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$Aff(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}$$

$$cb(\mathbb{R}^n)\cong S\times\mathbb{R}^{n(n+3)/2}.$$

$$Aff(n)/O(n) \cong \mathbb{R}^n \times GL(n)/O(n).$$

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$$GL(n)/O(n)$$
 is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$Aff(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}$$

$$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$$
.

$$\mathsf{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathit{GL}(n)/O(n).$$

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$$GL(n)/O(n)$$
 is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$Aff(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}.$$

$$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$$
.

$$Aff(n)/O(n) \cong \mathbb{R}^n \times GL(n)/O(n).$$

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$$GL(n)/O(n)$$
 is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$\mathsf{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}.$$

$$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$$
.

$$\mathsf{Aff}(n)/\mathcal{O}(n) \cong \mathbb{R}^n \times \mathsf{GL}(n)/\mathcal{O}(n).$$

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$$GL(n)/O(n)$$
 is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$\mathsf{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}.$$

$$cb(\mathbb{R}^n)\cong S\times\mathbb{R}^{n(n+3)/2}.$$

$$\mathsf{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathsf{GL}(n)/O(n).$$

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$$GL(n)/O(n)$$
 is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$\mathsf{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}.$$

$$cb(\mathbb{R}^n)\cong S\times\mathbb{R}^{n(n+3)/2}.$$

The John ellipsoid

For every compact convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid j(A) containing A. The ellipsoid j(A) is called the John (sometimes also the Löwner) ellipsoid of A.

The John ellipsoid

For every compact convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid j(A) containing A. The ellipsoid j(A) is called the John (sometimes also the Löwner) ellipsoid of A.

$$j: cb(\mathbb{R}^n) \to E(n) = \mathsf{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n)$$

$$j(gA) = gj(A)$$
 for every $g \in Aff(n)$, and $A \in cb(\mathbb{R}^n)$.

$$j: cb(\mathbb{R}^n) \to E(n) = \mathsf{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n)$$

$$j(gA) = gj(A)$$
 for every $g \in Aff(n)$, and $A \in cb(\mathbb{R}^n)$.

$$j: cb(\mathbb{R}^n) \to E(n) = \mathsf{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n)$$

$$j(gA) = gj(A)$$
 for every $g \in Aff(n)$, and $A \in cb(\mathbb{R}^n)$.

$$j: cb(\mathbb{R}^n) \to E(n) = \mathsf{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n)$$

$$j(gA) = gj(A)$$
 for every $g \in Aff(n)$, and $A \in cb(\mathbb{R}^n)$.

$$j: cb(\mathbb{R}^n) \to E(n) = \mathsf{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n)$$

$$j(gA) = gj(A)$$
 for every $g \in Aff(n)$, and $A \in cb(\mathbb{R}^n)$.

$$j(A) = g\mathbb{B}^n$$

$$j(A) = g\mathbb{B}^n$$

$$j(A) = g\mathbb{B}^n$$

$$j(A) = g\mathbb{B}^n$$

$$j(A) = g\mathbb{B}^n$$

$$j(A) = g\mathbb{B}^n$$

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$

1 J(n) is O(n)-invariant,

- \bigcirc J(n) is closed in $cb(\mathbb{R}^n)$,
- If $A \in J(n)$ and $g \in Aff(n) \setminus O(n)$ then

• J(n) is O(n)-invariant,

- 3 J(n) is closed in $cb(\mathbb{R}^n)$,
- ④ If $A \in J(n)$ and $g \in Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gi(A) = i(gA) \cdot \mathbb{B} + \mathbb{B} +$$

• J(n) is O(n)-invariant,

- ② Aff $(n)(J(n)) = cb(\mathbb{R}^n),$
- 3 J(n) is closed in $cb(\mathbb{R}^n)$,
- **④** If A ∈ J(n) and $g ∈ Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA) \cdot g \mapsto \text{if } gA \mapsto \text$$

- J(n) is O(n)-invariant,
- 3 J(n) is closed in $cb(\mathbb{R}^n)$,
- ① If $A \in J(n)$ and $g \in Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA)$$

Theorem

- J(n) is O(n)-invariant,
- **3** J(n) is closed in $cb(\mathbb{R}^n)$,
- ① If $A \in J(n)$ and $g \in Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA)$$

Theorem

- J(n) is O(n)-invariant,
- **3** J(n) is closed in $cb(\mathbb{R}^n)$,
- **4** If $A \in J(n)$ and $g \in Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA)$$

Theorem

- J(n) is O(n)-invariant,
- **3** J(n) is closed in $cb(\mathbb{R}^n)$,

$$\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA)$$

Theorem

Hence,

$$cb(\mathbb{R}^n)\cong J(n)\times\mathbb{R}^{n(n+3)/2}.$$

Computing J(n)

Theorem

J(n) is an O(n)-AR (and hence, it is an AR).

Proof.

Being a global O(n)-slice, J(n) is an O(n)-retract of $cb(\mathbb{R}^n)$. But $cb(\mathbb{R}^n) \in O(n)$ -AR since

$$\Lambda_k(A_1,\ldots A_k,t_1,\ldots t_k)=\sum_{i=1}^k t_iA_i,\quad k=1,2,\ldots$$

defines an O(n)-equivariant convex structure on $cb(\mathbb{R}^n)$.

J(n) is a Hilbert cube

Theorem

The singleton $\{\mathbb{B}^n\}$ is a Z-set in J(n). Moreover, if $K \subset O(n)$ is a closed subgroup that acts nontransitively on the sphere \mathbb{S}^{n-1} , then for every $\varepsilon > 0$, there exists a K-map, $\chi_{\varepsilon} : J(n) \to J_0(n)$, ε -close to the identity map of J(n).

J(n) is a Hilbert cube.

Theorem

The singleton $\{\mathbb{B}^n\}$ is a Z-set in J(n). Moreover, if $K \subset O(n)$ is a closed subgroup that acts nontransitively on the sphere \mathbb{S}^{n-1} , then for every $\varepsilon > 0$, there exists a K-map, $\chi_{\varepsilon} : J(n) \to J_0(n)$, ε -close to the identity map of J(n).

J(n) is a Hilbert cube.

Theorem

The singleton $\{\mathbb{B}^n\}$ is a Z-set in J(n). Moreover, if $K \subset O(n)$ is a closed subgroup that acts nontransitively on the sphere \mathbb{S}^{n-1} , then for every $\varepsilon > 0$, there exists a K-map, $\chi_{\varepsilon} : J(n) \to J_0(n)$, ε -close to the identity map of J(n).

J(n) is a Hilbert cube.

Theorem

The singleton $\{\mathbb{B}^n\}$ is a Z-set in J(n). Moreover, if $K \subset O(n)$ is a closed subgroup that acts nontransitively on the sphere \mathbb{S}^{n-1} , then for every $\varepsilon > 0$, there exists a K-map, $\chi_{\varepsilon} : J(n) \to J_0(n)$, ε -close to the identity map of J(n).

According to Toruńczyk's Characterization Theorem, we have

Corollary

 $J_0(n)$ is a Q-manifold and hence J(n) is a Hilbert cube

Corollary

 $cb(\mathbb{R}^n)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3)/2}$

According to Toruńczyk's Characterization Theorem, we have:

Corollary

 $J_0(n)$ is a Q-manifold and hence J(n) is a Hilbert cube.

Corollary

 $cb(\mathbb{R}^n)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3)/2}$.

According to Toruńczyk's Characterization Theorem, we have:

Corollary

 $J_0(n)$ is a Q-manifold and hence J(n) is a Hilbert cube.

Corollary

 $cb(\mathbb{R}^n)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3)/2}$.

$$X^H = \{ x \in X \mid hx = x, \ \forall h \in H \}$$

- (c) for a closed subgroup $H \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the H-fixed point set $J(n)^H$ is homeomorphic to the Hilbert cube.
- (d) for a closed subgroup $H \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the H-orbit space J(n)/H is homeomorphic to the Hilbert cube.
- (e) for any closed subgroup $H \subset O(n)$, the H-orbit space $J_0(n)/H$ is a Q-manifold.

$$X^H = \{ x \in X \mid hx = x, \ \forall h \in H \}$$

- (c) for a closed subgroup $H \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the H-fixed point set $J(n)^H$ is homeomorphic to the Hilbert cube.
- (d) for a closed subgroup $H \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the H-orbit space J(n)/H is homeomorphic to the Hilbert cube.
- (e) for any closed subgroup $H \subset O(n)$, the H-orbit space $J_0(n)/H$ is a Q-manifold.

The Banach-Mazur compacta

In his 1932 book *Théorie des Opérations Linéaires*, S. Banach introduced the space of isometry classes [X], of *n*-dimensional Banach spaces X equipped with the well-known Banach-Mazur metric:

$$d([X],[Y]) = \ln\inf\left\{\|T\| \cdot \|T^{-1}\| \mid T: X \to Y \text{ linear isomorphism}\right\}$$

$$BM(n) = \{ [X] \mid \dim X = n \},$$

the Banach-Mazur compactum.

$$BM_0(n) = BM(n) \setminus \{[E]\},$$

the punctured Banach-Mazur compactum.

Theorem (Ant., 2000, Fund. Math.)

Let
$$L(n) = \{A \in J(n) \mid A = -A\}$$
. Then

$$BM(n) \cong L(n)/O(n)$$
.

Theorem (Ant., 2005, Fundamentalnaya i Prikladnaya Matematika)

Let the orthogonal group O(n) act on a Hilbert cube Q in such a way that:

- (a) Q is an O(n)-AR with a unique O(n)-fixed point *,
- (b) Q is strictly O(n)-contractible to *,
- (c) for a closed subgroup $H \subset O(n)$, $Q^H = \{*\}$ if and only if H acts transitively on the unit sphere S^{n-1} and, Q^H is homeomorphic to the Hilbert cube whenever $Q^H \neq \{*\}$,
- (d) for any closed subgroup $H \subset O(n)$, the H-orbit space Q_0/H is a Q-manifold, where $Q_0 = X \setminus \{*\}$.

Then for every K < O(n), $Q_0/K \cong L_0(n)/K$. In particular, $Q_0/O(n) \cong BM_0(n)$, and hence, $Q/O(n) \cong BM(n)$.

A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t: X \to X, \ t \in {0,1}$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x,t) \in \{(x,1), \ (a,t)\}$. The corresponding nonequivariant notion was introduced by Michael.

- J(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).
- $cb(\mathbb{R}^n)/Aff(n) \cong J(n)/O(n) \cong BM(n)$.

A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t: X \to X$, $t \in 0, 1$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x,t) \in \{(x,1), (a,t)\}$. The corresponding nonequivariant notion was introduced by Michael.

- J(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).
- $cb(\mathbb{R}^n)/Aff(n) \cong J(n)/O(n) \cong BM(n)$.

A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t: X \to X$, $t \in {0,1}$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x,t) \in \{(x,1), (a,t)\}$. The corresponding nonequivariant notion was introduced by Michael.

- J(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).
- $cb(\mathbb{R}^n)/Aff(n) \cong J(n)/O(n) \cong BM(n)$.

A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t: X \to X$, $t \in 0, 1$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x,t) \in \{(x,1), (a,t)\}$. The corresponding nonequivariant notion was introduced by Michael.

- J(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).
- $cb(\mathbb{R}^n)/Aff(n) \cong J(n)/O(n) \cong BM(n)$.

Special Case of $exp \mathbb{S}^1$

Denote $exp_0 \mathbb{S}^1 = (exp \mathbb{S}^1) \setminus {\mathbb{S}^1}$.

$$(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1.$$

Corollary (Toruńczyk-West, 1978)

 $(exp_0 \mathbb{S}^1)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$.

Proof [Ant., 2007, Topology Appl.]

Since $(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1$ and $L_0(2)/\mathbb{S}^1$ is a Q-manifold

Special Case of $exp \mathbb{S}^1$

Denote $exp_0 \mathbb{S}^1 = (exp \mathbb{S}^1) \setminus \{\mathbb{S}^1\}.$

Corollary (Ant., 2007, Topology Appl.)

$$(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1.$$

Corollary (Toruńczyk-West, 1978)

 $(\exp_0 \mathbb{S}^1)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$.

Proof [Ant., 2007, Topology Appl.] Since $(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1$ and $L_0(2)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$ (Ant., 2000, Fund. Math.)

Special Case of $exp S^1$

Denote $exp_0 \mathbb{S}^1 = (exp \mathbb{S}^1) \setminus \{\mathbb{S}^1\}.$

Corollary (Ant., 2007, Topology Appl.)

$$(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1.$$

Corollary (Toruńczyk-West, 1978)

 $(exp_0 \mathbb{S}^1)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$.

Proof [Ant., 2007, Topology Appl.] Since $(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1$ and $L_0(2)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$ (Ant., 2000, Fund. Math.)

Special Case of $exp S^1$

Denote
$$exp_0 \mathbb{S}^1 = (exp \mathbb{S}^1) \setminus {\mathbb{S}^1}$$
.

$$(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1.$$

Corollary (Toruńczyk-West, 1978)

 $(exp_0 \mathbb{S}^1)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$.

Proof [Ant., 2007, Topology Appl.]

Since $(exp_0 \mathbb{S}^1)/\mathbb{S}^1 \cong L_0(2)/\mathbb{S}^1$ and $L_0(2)/\mathbb{S}^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q},2)$ (Ant., 2000, Fund. Math.)

Corollary (Ant., 2007, Topology Appl.)

- $(exp_0 \mathbb{S}^1)/\mathbb{O}(2) \cong L_0(2)/\mathbb{O}(2)$.
- $(\exp \mathbb{S}^1)/\mathbb{O}(2) \cong BM(2)$.

Corollary (Ant., 2007, Topology Appl.)

- $(exp_0 \mathbb{S}^1)/\mathbb{O}(2) \cong L_0(2)/\mathbb{O}(2)$.
- $(\exp \mathbb{S}^1)/\mathbb{O}(2) \cong BM(2)$.

$$OC(X) = X \times [0, \infty/X \times \{0\},$$

$$\mathbb{R}^n = OC(\mathbb{S}^{n-1})$$

$$cc(\mathbb{R}^n) = OC(?)$$

$$M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap \mathbb{S}^{n-1} \neq \emptyset \}$$

$$OC(X) = X \times [0, \infty/X \times \{0\},$$

$$\mathbb{R}^n = OC(\mathbb{S}^{n-1})$$

$$cc(\mathbb{R}^n) = OC(?)$$

$$M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap \mathbb{S}^{n-1} \neq \emptyset \}.$$

$$OC(X) = X \times [0, \infty/X \times \{0\},$$

$$\mathbb{R}^n = OC(\mathbb{S}^{n-1})$$

$$cc(\mathbb{R}^n) = OC(?)$$

$$M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap \mathbb{S}^{n-1} \neq \emptyset \}.$$

$$OC(X) = X \times [0, \infty/X \times \{0\},$$

$$\mathbb{R}^n = OC(\mathbb{S}^{n-1})$$

$$cc(\mathbb{R}^n) = OC(?)$$

$$M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap \mathbb{S}^{n-1} \neq \emptyset \}.$$

Proposition

 $cc(\mathbb{R}^n)$ is O(n)-homeomorphic to the open cone over M(n).

Proposition

 $\mathrm{cc}(\mathbb{R}^n)/K$ is homeomorphic to the open cone over M(n)/K

Proposition

 $cc(\mathbb{R}^n)$ is O(n)-homeomorphic to the open cone over M(n).

Proposition

 $\operatorname{cc}(\mathbb{R}^n)/K$ is homeomorphic to the open cone over M(n)/K

Proposition

 $cc(\mathbb{R}^n)$ is O(n)-homeomorphic to the open cone over M(n).

Proposition

 $cc(\mathbb{R}^n)/K$ is homeomorphic to the open cone over M(n)/K.

- (a) for a closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the K-fixed point set $M(n)^K$ is homeomorphic to the Hilbert cube.
- (b) for a closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the K-orbit space M(n)/K is homeomorphic to the Hilbert cube.
- (c) for any closed subgroup $K \subset O(n)$, the K-orbit space $M_0(n)/K$ is a Q-manifold.

Corollary $M(n)/O(n) \cong BM(n)$

- (a) for a closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the K-fixed point set $M(n)^K$ is homeomorphic to the Hilbert cube.
- (b) for a closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the K-orbit space M(n)/K is homeomorphic to the Hilbert cube.
- (c) for any closed subgroup $K \subset O(n)$, the K-orbit space $M_0(n)/K$ is a Q-manifold.

Corollary

 $M(n)/O(n) \cong BM(n)$

- ullet $cc(\mathbb{B}^n)/O(n)$ is the cone over the Banach-Mazur compactum BM(n).
- $cc(\mathbb{R}^n)/O(n)$ is the open cone over the Banach-Mazur compactum BM(n).

Theorem

For every closed subgroup $K \subset O(n)$ that acts non-transitively on \mathbb{S}^{n-1} , $cc(\mathbb{R}^n)$ satisfies the K-equivariant DDP: for every $\varepsilon > 0$, there exist K-maps, f_{ε} , h_{ε} : $cc(\mathbb{R}^n) \to cc(\mathbb{R}^n)$, ε -close to the identity map of $cc(\mathbb{R}^n)$ and such that $\mathrm{Im} f_{\varepsilon} \cap \mathrm{Im} h_{\varepsilon} = \emptyset$.

- $cc(\mathbb{B}^n)/O(n)$ is the cone over the Banach-Mazur compactum BM(n).
- $cc(\mathbb{R}^n)/O(n)$ is the open cone over the Banach-Mazur compactum BM(n).

Theorem

For every closed subgroup $K \subset O(n)$ that acts non-transitively on \mathbb{S}^{n-1} , $cc(\mathbb{R}^n)$ satisfies the K-equivariant DDP: for every $\varepsilon > 0$, there exist K-maps, $f_{\varepsilon}, h_{\varepsilon} : cc(\mathbb{R}^n) \to cc(\mathbb{R}^n)$, ε -close to the identity map of $cc(\mathbb{R}^n)$ and such that $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} h_{\varepsilon} = \emptyset$.

- $cc(\mathbb{B}^n)/O(n)$ is the cone over the Banach-Mazur compactum BM(n).
- $cc(\mathbb{R}^n)/O(n)$ is the open cone over the Banach-Mazur compactum BM(n).

Theorem

For every closed subgroup $K \subset O(n)$ that acts non-transitively on \mathbb{S}^{n-1} , $cc(\mathbb{R}^n)$ satisfies the K-equivariant DDP: for every $\varepsilon > 0$, there exist K-maps, $f_{\varepsilon}, h_{\varepsilon} : cc(\mathbb{R}^n) \to cc(\mathbb{R}^n)$, ε -close to the identity map of $cc(\mathbb{R}^n)$ and such that $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} h_{\varepsilon} = \emptyset$.

For every closed subgroup $K \subset O(n)$ that acts non transitively on \mathbb{S}^{n-1} , the K-orbit space

$$cc(\mathbb{R}^n)/K$$

is homeomorphic to the punctured Hilbert cube $Q_0 = Q \setminus \{*\}$.

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu} : cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu}: cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu}: cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu}: cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu} : cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu} : cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu} : cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu: cc(\mathbb{R}^n) \to [0,\infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an O(n)-invariant CE-map.
- The induced map $\widetilde{\nu} : cb(\mathbb{R}^n)/K \to [0,\infty]$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0,\infty) \cong Q \setminus \{*\}.$

Orbit spaces of $cb(\mathbb{R}^n)$

Theorem

For every closed subgroup $K \subset O(n)$ that acts non-transitively on \mathbb{S}^{n-1} , the K-orbit space

$$cb(\mathbb{R}^n)/K$$

is a Q-manifold homeomorphic to the product $Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K \to \frac{\operatorname{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K \to \frac{\operatorname{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K \to \frac{\operatorname{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K \to \frac{\operatorname{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K \to \frac{\operatorname{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f:M\to Y$ from a Q-manifold to an ANR, then $M\cong Q\times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K \to \frac{\operatorname{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K o rac{{\mathsf{Aff}}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$ -AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an Aff(n)-equivariant CE-map.
- The induced map $\widetilde{j}: cb(\mathbb{R}^n)/K o rac{{\mathsf{Aff}}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f: M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{Aff(n)/O(n)}{K}$.

THANKS