HYPERSPACES OF COMPACT CONVEX SETS

Sergey Antonyan
and
Natalia Jonard Pérez

National University of Mexico

Dubrovnik VII - Geometric Topology
Dubrovnik, Croatia
June 26, 2011
Motivation

Affine group action on $cb(\mathbb{R}^n)$

Global Slices

The John ellipsoid

Computing $J(n)$

The Banach-Mazur compacta

Equivariant conic structure of $cc(\mathbb{R}^n)$

Orbit spaces of $cb(\mathbb{R}^n)$
Some Motivation

For every $n \geq 1$, let's denote:
- $cc(\mathbb{R}^n)$ the hyperspace of all compact convex subsets of \mathbb{R}^n,
- $cb(\mathbb{R}^n)$ the hyperspace of all compact convex bodies of \mathbb{R}^n,

equipped with the Hausdorff metric topology:

$$d_H(A, B) = \max \left\{ \sup_{b \in B} d(b, A), \sup_{a \in A} d(a, B) \right\},$$

where d is the Euclidean metric and $d(b, A) = \inf \{ d(b, a) \mid a \in A \}$.
Theorem (Nadler, Quinn, and Stavrakas (1979))

For \(n \geq 2 \), \(cc(\mathbb{R}^n) \) is homeomorphic to \(Q \setminus \{ pt \} \) where \(Q \) denotes the Hilbert cube.

• **Question.** What is the topological structure of \(cb(\mathbb{R}^n) \), \(n \geq 2 \)?

The subspace

\[
B(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}
\]

was studied earlier in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

\[
B(n) \cong Q \times \mathbb{R}^{n(n+1)/2}.
\]
Theorem (Nadler, Quinn, and Stavrakas (1979))

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

• Question. What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earlier in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

$$\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}.$$
Theorem (Nadler, Quinn, and Stavrakas (1979))

For \(n \geq 2 \), \(cc(\mathbb{R}^n) \) is homeomorphic to \(Q \setminus \{ pt \} \) where \(Q \) denotes the Hilbert cube.

- **Question.** What is the topological structure of \(cb(\mathbb{R}^n), n \geq 2 \)?

The subspace

\[
\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}
\]

was studied earlier in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

\[
\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}.
\]
Theorem (Nadler, Quinn, and Stavrakas (1979))

For $n \geq 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$ where Q denotes the Hilbert cube.

Question. What is the topological structure of $cb(\mathbb{R}^n)$, $n \geq 2$?

The subspace

$$B(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}$$

was studied earlier in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

$$B(n) \cong Q \times \mathbb{R}^{n(n+1)/2}.$$
Theorem (Nadler, Quinn, and Stavrakas (1979))

For \(n \geq 2 \), \(cc(\mathbb{R}^n) \) is homeomorphic to \(Q \setminus \{ \text{pt} \} \) where \(Q \) denotes the Hilbert cube.

- **Question.** What is the topological structure of \(cb(\mathbb{R}^n) \), \(n \geq 2 \)?

The subspace

\[
\mathcal{B}(n) = \{ A \in cb(\mathbb{R}^n) \mid A = -A \}
\]

was studied earlier in [Ant., Fund. Math., 2000] and [Ant., TAMS, 2003].

\[
\mathcal{B}(n) \cong Q \times \mathbb{R}^{n(n+1)/2}.
\]
Affine group action on \(cb(\mathbb{R}^n) \)

Our approach is largely based on the study of the natural affine group action on \(cb(\mathbb{R}^n) \).

\(\text{Aff}(n) \) is the group of all nonsingular affine transformations of \(\mathbb{R}^n \).

\(g \in \text{Aff}(n) \) iff \(g(x) = v + \sigma(x) \) for every \(x \in \mathbb{R}^n \), where \(\sigma \in GL(n) \) and \(v \) is a fixed vector.

\(\text{Aff}(n) \) acts on \(cb(\mathbb{R}^n) \) by the following rule:

\[
\text{Aff}(n) \times cb(\mathbb{R}^n) \to cb(\mathbb{R}^n) \\
(g, A) \to gA = \{g(a) \mid a \in A\}.
\]
Affine group action on $cb(\mathbb{R}^n)$

Our approach is largely based on the study of the natural affine group action on $cb(\mathbb{R}^n)$.

$\text{Aff}(n)$ is the group of all nonsingular affine transformations of \mathbb{R}^n.

$g \in \text{Aff}(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in \text{GL}(n)$ and v is a fixed vector.

$\text{Aff}(n)$ acts on $cb(\mathbb{R}^n)$ by the following rule:

$$\text{Aff}(n) \times cb(\mathbb{R}^n) \rightarrow cb(\mathbb{R}^n)$$

$$(g, A) \rightarrow gA = \{g(a) \mid a \in A\}.$$
Affine group action on $cb(\mathbb{R}^n)$

Our approach is largely based on the study of the natural affine group action on $cb(\mathbb{R}^n)$.

$\text{Aff}(n)$ is the group of all nonsingular affine transformations of \mathbb{R}^n.

g $\in \text{Aff}(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in GL(n)$ and v is a fixed vector.

$\text{Aff}(n)$ acts on $cb(\mathbb{R}^n)$ by the following rule:

$$\text{Aff}(n) \times cb(\mathbb{R}^n) \to cb(\mathbb{R}^n)$$

$$(g, A) \mapsto gA = \{g(a) \mid a \in A\}.$$
Motivation

Affine group action on $cb(\mathbb{R}^n)$

Global Slices The John ellipsoid

Computing $J(n)$

The Banach-Mazur compacta

Equivariant conic structure of $cc(\mathbb{R}^n)$

Orbit spaces of $cb(\mathbb{R}^n)$

(A. Macbeath, 1951). The orbit space $cb(\mathbb{R}^n)/\text{Aff}(n)$ is a compact metric space.
Theorem

The action of Aff(n) on cb(\(\mathbb{R}^n\)) is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group G on a Tychonoff space X is proper if every point \(x \in X\) has a neighborhood \(V_x\) such that for any point \(y \in X\) there is a neighborhood \(V_y\) with the property that the transporter from \(V_x\) to \(V_y\)

\[
\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}
\]

has compact closure in G.
Theorem

The action of Aff(n) on $cb(\mathbb{R}^n)$ is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group G on a Tychonoff space X is proper if every point $x \in X$ has a neighborhood V_x such that for any point $y \in X$ there is a neighborhood V_y with the property that the transporter from V_x to V_y

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

has compact closure in G.
\[
\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}
\]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
\[\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \} \]
Global Slices

Definition

Let X be a G-space, and $H \leq G$ a closed subgroup. A subset $S \subset X$ is called a global \textit{H-slice} if the following conditions hold:

- $G(S) = X$, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in $G(S)$.
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.
Global Slices

Definition

Let X be a G-space, and $H \leq G$ a closed subgroup. A subset $S \subset X$ is called a global H-slice if the following conditions hold:

- $G(S) = X$, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in $G(S)$.
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.
Global Slices

Definition

Let X be a G-space, and $H \leq G$ a closed subgroup. A subset $S \subset X$ is called a global *H-slice* if the following conditions hold:

- $G(S) = X$, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in $G(S)$.
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.
Global Slices

Definition

Let X be a G-space, and $H \leq G$ a closed subgroup. A subset $S \subset X$ is called a global H-slice if the following conditions hold:

- $G(S) = X$, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in $G(S)$.
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

\[G(S) = X, \quad gS \cap S = \emptyset \quad \text{for all } g \in G \setminus H. \]
Global Slices

Definition

Let X be a G-space, and $H \leq G$ a closed subgroup. A subset $S \subset X$ is called a global H-slice if the following conditions hold:

- $G(S) = X$, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in $G(S)$.
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

![Diagram of global slices](image-url)
Theorem (Palais, 1961)

Let G be a Lie group, X be a proper G-space and $x \in X$. Then there exists a G-invariant neighborhood U of x which admits a global G_x-slice S for U.

Equivalent form: there exists a G-map

$$f : U \to G/G_x$$

such that $f^{-1}(eG_x) = S$.

If, in addition, G is a Lie group having finitely many connected components, then a maximal compact subgroup $K \subset G$ exists. In this case $gG_xg^{-1} \subset K$, and hence, there is a G-map

$$q : G/G_x \to G/K.$$
Theorem (Palais, 1961)

Let G be a Lie group, X be a proper G-space and $x \in X$. Then there exists a G-invariant neighborhood U of x which admits a global G_x-slice S for U.

Equivalent form: there exists a G-map

$$f : U \rightarrow G/G_x \quad \text{such that} \quad f^{-1}(eG_x) = S.$$

If, in addition, G is a Lie group having finitely many connected components, then a maximal compact subgroup $K \subset G$ exists. In this case $gG_xg^{-1} \subset K$, and hence, there is a G-map

$$q : G/G_x \rightarrow G/K.$$
Theorem (Palais, 1961)

Let G be a Lie group, X be a proper G-space and $x \in X$. Then there exists a G-invariant neighborhood U of x which admits a global G_x-slice S for U.

Equivalent form: there exists a G-map

$$f : U \to G/G_x \quad \text{such that} \quad f^{-1}(eG_x) = S.$$

If, in addition, G is a Lie group having finitely many connected components, then a maximal compact subgroup $K \subset G$ exists. In this case $gG_xg^{-1} \subset K$, and hence, there is a G-map

$$q : G/G_x \to G/K.$$
Consider the composition:

\[U \xrightarrow{f} \frac{G}{G_x} \xrightarrow{q} \frac{G}{K} \]

The inverse image \(Q = F^{-1}(eK) \) is a \(K \)-slice for \(U \).
Consider the composition:

\[U \xrightarrow{f} G/G_x \xrightarrow{q} G/K \]

The inverse image \(Q = F^{-1}(eK) \) is a \(K \)-slice for \(U \).
Consider the composition:

\[U \xrightarrow{f} G/G_x \xrightarrow{q} G/K \]

The inverse image \(Q = F^{-1}(eK) \) is a \(K \)-slice for \(U \).
Consider the composition:

\[U \xrightarrow{f} G/G_x \xrightarrow{q} G/K \xrightarrow{F} \]

The inverse image \(Q = F^{-1}(eK) \) is a \(K \)-slice for \(U \).

HYPERSPACES OF COMPACT CONVEX SETS
Consider the composition:

\[
U \xrightarrow{f} G/G_x \xrightarrow{q} G/K
\]

The inverse image \(Q = F^{-1}(eK) \) is a \(K \)-slice for \(U \).

HYPERSPACES OF COMPACT CONVEX SETS
This K-slices can be pasted together to obtain a global K-slice of X.

Theorem (Abels, 1974)

Let G be a Lie group having finitely many connected components, K a maximal compact subgroup and X a proper G-space. If the orbit space X/G is paracompact then

1. X admits a global K-slice S.
2. X is K-equivariantly homeomorphic to the product $S \times G/K$.

HYPERSPACES OF COMPACT CONVEX SETS
This K-slices can be pasted together to obtain a global K-slice of X.

Theorem (Abels, 1974)

Let G be a Lie group having finitely many connected components, K a maximal compact subgroup and X a proper G-space. If the orbit space X/G is paracompact then

1. X admits a global K-slice S.
2. X is K-equivariantly homeomorphic to the product $S \times G/K$.
Affine group action on $cb(\mathbb{R}^n)$

- Aff(n) has two connected components.
- $O(n)$, the orthogonal group, is a maximal compact subgroup of $\text{Aff}(n)$.
- Aff(n) acts properly on $cb(\mathbb{R}^n)$.
- The orbit space $cb(\mathbb{R}^n)/\text{Aff}(n)$ is metrizable and compact.

Hence, there exists a global $O(n)$-slice S for $cb(\mathbb{R}^n)$ and

$$cb(\mathbb{R}^n) \cong S \times \text{Aff}(n)/O(n).$$
• Aff(n) has two connected components.
• $O(n)$, the orthogonal group, is a maximal compact subgroup of Aff(n).
• Aff(n) acts properly on $cb(\mathbb{R}^n)$.
• The orbit space $cb(\mathbb{R}^n)/\text{Aff}(n)$ is metrizable and compact.

Hence, there exists a global $O(n)$-slice S for $cb(\mathbb{R}^n)$ and

$$cb(\mathbb{R}^n) \cong S \times \text{Aff}(n)/O(n).$$
$\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \text{GL}(n)/O(n)$.

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$\text{GL}(n)/O(n)$ is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}$.

$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$.

It remains to find S.

HYPERSPACES OF COMPACT CONVEX SETS
\[\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \text{GL}(n)/O(n). \]

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

\[\text{GL}(n)/O(n) \text{ is homeomorphic to } \mathbb{R}^{n(n+1)/2} \]

\[\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}. \]

\[\text{cb}(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}. \]

It remains to find \(S \).
Motivation

Affine group action on \(cb(\mathbb{R}^n) \)

Global Slices

The John ellipsoid

Computing \(J(n) \)

The Banach-Mazur compacta

Equivariant conic structure of \(cc(\mathbb{R}^n) \)

Orbit spaces of \(cb(\mathbb{R}^n) \)

\[
\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times GL(n)/O(n).
\]

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

GL(n)/O(n) is homeomorphic to \(\mathbb{R}^{n(n+1)/2} \)

\[
\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}.
\]

\[
\text{cb}(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}.
\]

It remains to find \(S \).
Motivation

Affine group action on $cb(\mathbb{R}^n)$

Global Slices

The John ellipsoid

Computing $J(n)$

The Banach-Mazur compacta

Equivariant conic structure of $cc(\mathbb{R}^n)$

Orbit spaces of $cb(\mathbb{R}^n)$

Aff(n)/$O(n) \cong \mathbb{R}^n \times GL(n)/O(n)$.

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

GL(n)/$O(n)$ is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}.$$

$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$.

It remains to find S.

HYPERSPACES OF COMPACT CONVEX SETS
Affine group action on $cb(\mathbb{R}^n)$

Global Slices

The John ellipsoid

Computing $J(n)$

The Banach-Mazur compacta

Equivariant conic structure of $cc(\mathbb{R}^n)$

Orbit spaces of $cb(\mathbb{R}^n)$

Aff$(n)/O(n) \cong \mathbb{R}^n \times GL(n)/O(n)$.

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$GL(n)/O(n)$ is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$$\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} \cong \mathbb{R}^{n(n+3)/2}.$$

$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$.

It remains to find S.

HYPERSPACES OF COMPACT CONVEX SETS
Motivation

Affine group action on $cb(\mathbb{R}^n)$

Global Slices

The John ellipsoid

Computing $J(n)$

The Banach-Mazur compacta

Equivariant conic structure of $cc(\mathbb{R}^n)$

Orbit spaces of $cb(\mathbb{R}^n)$

$\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times GL(n)/O(n)$.

RQ-Decomposition Theorem

Every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper triangular matrix with positive elements in the diagonal.

$GL(n)/O(n)$ is homeomorphic to $\mathbb{R}^{n(n+1)/2}$

$\text{Aff}(n)/O(n) \cong \mathbb{R}^n \times \mathbb{R}^{n(n+1)/2} = \mathbb{R}^{n(n+3)/2}$.

$cb(\mathbb{R}^n) \cong S \times \mathbb{R}^{n(n+3)/2}$.

It remains to find S.

HYPERSPACES OF COMPACT CONVEX SETS
The John ellipsoid

For every compact convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid $j(A)$ containing A. The ellipsoid $j(A)$ is called the John (sometimes also the Löwner) ellipsoid of A.
For every compact convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid $j(A)$ containing A. The ellipsoid $j(A)$ is called the John (sometimes also the Löwner) ellipsoid of A.
The map
\[j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n) \]
is Aff\((n)\)-equivariant, i.e.,
\[j(gA) = gj(A) \quad \text{for every} \quad g \in \text{Aff}(n), \text{ and } A \in cb(\mathbb{R}^n). \]
The map
\[j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n) \]
is Aff(n)-equivariant, i.e.,
\[j(gA) = gj(A) \quad \text{for every} \quad g \in \text{Aff}(n), \quad \text{and} \quad A \in cb(\mathbb{R}^n). \]
The map

\[j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n) \]

is Aff\((n)\)-equivariant, i.e.,

\[j(gA) = gj(A) \quad \text{for every} \quad g \in \text{Aff}(n), \text{ and } A \in cb(\mathbb{R}^n). \]
The map
\[j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n) \]
is Aff(n)-equivariant, i.e.,
\[j(gA) = gj(A) \quad \text{for every} \quad g \in \text{Aff}(n), \text{ and } A \in cb(\mathbb{R}^n). \]
The map
\[j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)(\mathbb{B}^n) \subset cb(\mathbb{R}^n) \]
is \text{Aff}(n)-equivariant, i.e.,
\[j(gA) = gj(A) \quad \text{for every} \quad g \in \text{Aff}(n), \text{ and } A \in cb(\mathbb{R}^n). \]
For every $A \in cb(\mathbb{R}^n)$ there exists an affine transformation $g \in Aff(n)$ such that

$$j(A) = g\mathbb{B}^n$$

where \mathbb{B}^n is the closed Euclidean unit ball.
For every $A \in cb(\mathbb{R}^n)$ there exists an affine transformation $g \in \text{Aff}(n)$ such that

$$j(A) = g \mathbb{B}^n$$

where \mathbb{B}^n is the closed Euclidean unit ball.
For every $A \in cb(\mathbb{R}^n)$ there exists an affine transformation $g \in \text{Aff}(n)$ such that

$$j(A) = gB^n$$

where B^n is the closed Euclidean unit ball.
For every $A \in cb(\mathbb{R}^n)$ there exists an affine transformation $g \in \text{Aff}(n)$ such that

$$j(A) = gB^n$$

where B^n is the closed Euclidean unit ball.
For every $A \in cb(\mathbb{R}^n)$ there exists an affine transformation $g \in \text{Aff}(n)$ such that

$$j(A) = g \mathbb{B}^n$$

where \mathbb{B}^n is the closed Euclidean unit ball.
For every \(A \in cb(\mathbb{R}^n) \) there exists an affine transformation \(g \in \text{Aff}(n) \) such that

\[
j(A) = g\mathbb{B}^n
\]

where \(\mathbb{B}^n \) is the closed Euclidean unit ball.
For every $n \geq 2$ let's denote by $J(n)$ the following set:

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$
For every $n \geq 2$ let's denote by $J(n)$ the following set:

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$
For every $n \geq 2$ lets denote by $J(n)$ the following set:

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n \}.$$
For every $n \geq 2$ lets denote by $J(n)$ the following set:

$$J(n) = \{ A \in cb(\mathbb{R}^n) \mid j(A) = B^n \}.$$
1. \(J(n) \) is \(O(n) \)-invariant,

2. \(\text{Aff}(n)(J(n)) = cb(\mathbb{R}^n) \),

3. \(J(n) \) is closed in \(cb(\mathbb{R}^n) \),

4. If \(A \in J(n) \) and \(g \in \text{Aff}(n) \setminus O(n) \) then

 \[B^n \neq gB^n = gj(A) = j(gA) \]
1. \(J(n) \) is \(O(n) \)-invariant,

2. \(\text{Aff}(n)(J(n)) = cb(\mathbb{R}^n) \),

3. \(J(n) \) is closed in \(cb(\mathbb{R}^n) \),

4. If \(A \in J(n) \) and \(g \in \text{Aff}(n) \setminus O(n) \) then

\[
\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA).
\]
1. $J(n)$ is $O(n)$-invariant,

2. $\text{Aff}(n)(J(n)) = cb(\mathbb{R}^n)$,

3. $J(n)$ is closed in $cb(\mathbb{R}^n)$,

4. If $A \in J(n)$ and $g \in \text{Aff}(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA).$$
1. $J(n)$ is $O(n)$-invariant,

2. $\text{Aff}(n)(J(n)) = cb(\mathbb{R}^n)$,

3. $J(n)$ is closed in $cb(\mathbb{R}^n)$,

4. If $A \in J(n)$ and $g \in \text{Aff}(n) \setminus O(n)$ then

 $$\mathbb{B}^n \neq g \mathbb{B}^n = gj(A) = j(gA)$$

 and hence $J(n) \cap gJ(n) = \emptyset$.

Theorem

$J(n)$ is a global $O(n)$-slice for $cb(\mathbb{R}^n)$.

HYPERSPACES OF COMPACT CONVEX SETS
1. $J(n)$ is $O(n)$-invariant,

2. $\text{Aff}(n)(J(n)) = cb(\mathbb{R}^n)$,

3. $J(n)$ is closed in $cb(\mathbb{R}^n)$,

4. If $A \in J(n)$ and $g \in \text{Aff}(n) \setminus O(n)$ then

$$B^n \neq gB^n = gj(A) = j(gA)$$

and hence $J(n) \cap gJ(n) = \emptyset$.

Theorem

$J(n)$ is a global $O(n)$-slice for $cb(\mathbb{R}^n)$.
1. \(J(n) \) is \(O(n) \)-invariant,

2. \(\text{Aff}(n)(J(n)) = cb(\mathbb{R}^n) \),

3. \(J(n) \) is closed in \(cb(\mathbb{R}^n) \),

4. If \(A \in J(n) \) and \(g \in \text{Aff}(n) \setminus O(n) \) then

\[
\mathbb{B}^n \neq g\mathbb{B}^n = gj(A) = j(gA)
\]

and hence \(J(n) \cap gJ(n) = \emptyset \).

Theorem

\(J(n) \) is a global \(O(n) \)-slice for \(cb(\mathbb{R}^n) \).
\begin{enumerate}
 \item $J(n)$ is $O(n)$-invariant,
 \item $\text{Aff}(n)(J(n)) = \text{cb}(\mathbb{R}^n)$,
 \item $J(n)$ is closed in $\text{cb}(\mathbb{R}^n)$,
 \item If $A \in J(n)$ and $g \in \text{Aff}(n) \setminus O(n)$ then
 \[B^n \neq gB^n = gj(A) = j(gA) \]
 and hence $J(n) \cap gJ(n) = \emptyset$.
\end{enumerate}

Theorem

$J(n)$ is a global $O(n)$-slice for $\text{cb}(\mathbb{R}^n)$.
Hence,

\[cb(\mathbb{R}^n) \cong J(n) \times \mathbb{R}^{n(n+3)/2} . \]
Computing $J(n)$

Theorem

$J(n)$ is an $O(n)$-AR (and hence, it is an AR).

Proof.

Being a global $O(n)$-slice, $J(n)$ is an $O(n)$-retract of $cb(\mathbb{R}^n)$. But $cb(\mathbb{R}^n) \in O(n)$-AR since

$$\Lambda_k(A_1, \ldots A_k, t_1, \ldots t_k) = \sum_{i=1}^{k} t_i A_i, \quad k = 1, 2, \ldots$$

defines an $O(n)$-equivariant convex structure on $cb(\mathbb{R}^n)$. \[\square\]
We will show that

$$J(n)$$ is a Hilbert cube.

Theorem

The singleton \(\{ \mathbb{B}^n \} \) is a Z-set in \(J(n) \). Moreover, if \(K \subset O(n) \) is a closed subgroup that acts nontransitively on the sphere \(\mathbb{S}^{n-1} \), then for every \(\varepsilon > 0 \), there exists a \(K \)-map, \(\chi_\varepsilon : J(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J(n) \).

Lets denote by \(J_0(n) = J(n) \setminus \{ \mathbb{B}^n \} \).
We will show that

\(J(n) \) is a Hilbert cube.

Theorem

The singleton \(\{ \mathbb{B}^n \} \) is a Z-set in \(J(n) \). Moreover, if \(K \subset O(n) \) is a closed subgroup that acts nontransitively on the sphere \(S^{n-1} \), then for every \(\varepsilon > 0 \), there exists a \(K \)-map, \(\chi_\varepsilon : J(n) \rightarrow J_0(n) \), \(\varepsilon \)-close to the identity map of \(J(n) \).

Let's denote by \(J_0(n) = J(n) \setminus \{ \mathbb{B}^n \} \).
We will show that

\[J(n) \text{ is a Hilbert cube.} \]

Theorem

The singleton \(\{ B^n \} \) is a Z-set in \(J(n) \). Moreover, if \(K \subset O(n) \) is a closed subgroup that acts nontransitively on the sphere \(S^{n-1} \), then for every \(\varepsilon > 0 \), there exists a \(K \)-map, \(\chi_\varepsilon : J(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J(n) \).

Let's denote by \(J_0(n) = J(n) \setminus \{ B^n \} \).
We will show that

\[J(n) \] is a Hilbert cube.

Theorem

The singleton \(\{ B^n \} \) is a Z-set in \(J(n) \). Moreover, if \(K \subset O(n) \) is a closed subgroup that acts nontransitively on the sphere \(S^{n-1} \), then for every \(\varepsilon > 0 \), there exists a \(K \)-map, \(\chi_\varepsilon : J(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J(n) \).

Let's denote by \(J_0(n) = J(n) \setminus \{ B^n \} \).
Motivation Affine group action on $cb(\mathbb{R}^n)$ Global Slices The John ellipsoid Computing $J(n)$ The Banach-Mazur compacta

Theorem

$J_0(n)$ satisfies the equivariant DDP: for every $\varepsilon > 0$, there exist $O(n)$-maps, $f_\varepsilon, h_\varepsilon : J_0(n) \to J_0(n)$, ε-close to the identity map of $J_0(n)$ and such that $\text{Im} f_\varepsilon \cap \text{Im} h_\varepsilon = \emptyset$.

HYPERSPACES OF COMPACT CONVEX SETS
Theorem

$J_0(n)$ satisfies the equivariant DDP: for every $\varepsilon > 0$, there exist $O(n)$-maps, $f_\varepsilon, h_\varepsilon : J_0(n) \to J_0(n)$, ε-close to the identity map of $J_0(n)$ and such that $\text{Im } f_\varepsilon \cap \text{Im } h_\varepsilon = \emptyset$.

HYPERSPACES OF COMPACT CONVEX SETS
Theorem

\(J_0(n) \) satisfies the equivariant DDP: for every \(\varepsilon > 0 \), there exist \(O(n) \)-maps, \(f_\varepsilon, h_\varepsilon : J_0(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J_0(n) \) and such that \(\operatorname{Im} f_\varepsilon \cap \operatorname{Im} h_\varepsilon = \emptyset \).
Theorem

\(J_0(n) \) satisfies the equivariant DDP: for every \(\varepsilon > 0 \), there exist \(O(n) \)-maps, \(f_\varepsilon, h_\varepsilon : J_0(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J_0(n) \) and such that \(\text{Im} f_\varepsilon \cap \text{Im} h_\varepsilon = \emptyset \).
Theorem

\(J_0(n) \) satisfies the equivariant DDP: for every \(\varepsilon > 0 \), there exist \(O(n) \)-maps, \(f_\varepsilon, h_\varepsilon : J_0(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J_0(n) \) and such that \(\text{Im} f_\varepsilon \cap \text{Im} h_\varepsilon = \emptyset \).
Theorem

\(J_0(n) \) satisfies the equivariant DDP: for every \(\varepsilon > 0 \), there exist \(O(n) \)-maps, \(f_\varepsilon, h_\varepsilon : J_0(n) \to J_0(n) \), \(\varepsilon \)-close to the identity map of \(J_0(n) \) and such that \(\text{Im } f_\varepsilon \cap \text{Im } h_\varepsilon = \emptyset \).
According to Toruńczyk’s Characterization Theorem, we have:

Corollary

\(J_0(n) \) is a Q-manifold and hence \(J(n) \) is a Hilbert cube.

Corollary

\(cb(\mathbb{R}^n) \) is homeomorphic to \(Q \times \mathbb{R}^{n(n+3)/2} \).
According to Toruńczyk’s Characterization Theorem, we have:

Corollary

\(J_0(n)\) is a Q-manifold and hence \(J(n)\) is a Hilbert cube.

Corollary

\(cb(\mathbb{R}^n)\) is homeomorphic to \(Q \times \mathbb{R}^{n(n+3)/2}\).
According to Toruńczyk’s Characterization Theorem, we have:

Corollary

\(J_0(n) \) is a \(Q \)-manifold and hence \(J(n) \) is a Hilbert cube.

Corollary

\(cb(\mathbb{R}^n) \) is homeomorphic to \(Q \times \mathbb{R}^{n(n+3)/2} \).
Motivation

Affine group action on \(cb(\mathbb{R}^n) \)

Global Slices

The John ellipsoid

Computing \(J(n) \)

The Banach-Mazur compacta

Equivariant conic structure of \(cc(\mathbb{R}^n) \)

Orbit spaces of \(cb(\mathbb{R}^n) \)

\[
X^H = \{ x \in X \mid hx = x, \ \forall h \in H \}
\]

Corollary

(c) for a closed subgroup \(H \subset O(n) \) that acts nontransitively on \(S^{n-1} \), the \(H \)-fixed point set \(J(n)^H \) is homeomorphic to the Hilbert cube.

(d) for a closed subgroup \(H \subset O(n) \) that acts nontransitively on \(S^{n-1} \), the \(H \)-orbit space \(J(n)/H \) is homeomorphic to the Hilbert cube.

(e) for any closed subgroup \(H \subset O(n) \), the \(H \)-orbit space \(J_0(n)/H \) is a Q-manifold.

HYPERSPACES OF COMPACT CONVEX SETS
Motivation

Affine group action on \(\mathcal{G}(\mathbb{R}^n) \)

Global Slices

The John ellipsoid

Computing \(J(n) \)

The Banach-Mazur compacta

Equivariant conic structure of \(\mathcal{C}(\mathbb{R}^n) \)

Orbit spaces of \(\mathcal{G}(\mathbb{R}^n) \)

\[
X^H = \{ x \in X \mid hx = x, \quad \forall h \in H \}
\]

Corollary

(c) for a closed subgroup \(H \subset O(n) \) that acts nontransitively on \(\mathbb{S}^{n-1} \), the \(H \)-fixed point set \(J(n)^H \) is homeomorphic to the Hilbert cube.

(d) for a closed subgroup \(H \subset O(n) \) that acts nontransitively on \(\mathbb{S}^{n-1} \), the \(H \)-orbit space \(J(n)/H \) is homeomorphic to the Hilbert cube.

(e) for any closed subgroup \(H \subset O(n) \), the \(H \)-orbit space \(J_0(n)/H \) is a \(Q \)-manifold.
The Banach-Mazur compacta

In his 1932 book *Théorie des Opérations Linéaires*, S. Banach introduced the space of isometry classes $[X]$, of n-dimensional Banach spaces X equipped with the well-known Banach-Mazur metric:

$$d([X], [Y]) = \ln \inf \left\{ \| T \| \cdot \| T^{-1} \| \mid T : X \to Y \text{ linear isomorphism} \right\}$$

$$BM(n) = \{ [X] \mid \dim X = n \},$$

the Banach-Mazur compactum.

$$BM_0(n) = BM(n) \setminus \{ [E] \},$$

the punctured Banach-Mazur compactum.

Let \(L(n) = \{ A \in J(n) \mid A = -A \} \). Then

\[
BM(n) \cong L(n) / O(n).
\]
Theorem (Ant., 2005, Fundamentalnaya i Prikladnaya Matematika)

Let the orthogonal group $O(n)$ act on a Hilbert cube Q in such a way that:

(a) Q is an $O(n)$-AR with a unique $O(n)$-fixed point \ast,
(b) Q is strictly $O(n)$-contractible to \ast,
(c) for a closed subgroup $H \subset O(n)$, $Q^H = \{\ast\}$ if and only if H acts transitively on the unit sphere S^{n-1} and, Q^H is homeomorphic to the Hilbert cube whenever $Q^H \neq \{\ast\}$,
(d) for any closed subgroup $H \subset O(n)$, the H-orbit space Q_0/H is a Q-manifold, where $Q_0 = X \setminus \{\ast\}$.

Then for every $K < O(n)$, $Q_0/K \cong L_0(n)/K$. In particular, $Q_0/O(n) \cong BM_0(n)$, and hence, $Q/O(n) \cong BM(n)$.

HYPERSPACES OF COMPACT CONVEX SETS
A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t : X \to X$, $t \in 0, 1$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x, t) \in \{(x, 1), (a, t)\}$. The corresponding nonequivariant notion was introduced by Michael.

Corollary

1. $J(n)/O(n)$ is homeomorphic to the Banach-Mazur compactum $BM(n)$.
2. $cb(\mathbb{R}^n)/\text{Aff}(n) \cong J(n)/O(n) \cong BM(n)$.

HYPERSPACES OF COMPACT CONVEX SETS
A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t : X \rightarrow X$, $t \in 0,1$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x, t) \in \{(x, 1), (a, t)\}$. The corresponding nonequivariant notion was introduced by Michael.

Corollary

- $J(n)/O(n)$ is homeomorphic to the Banach-Mazur compactum $BM(n)$.
- $cb(\mathbb{R}^n)/\text{Aff}(n) \cong J(n)/O(n) \cong BM(n)$.
A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t : X \to X$, $t \in 0, 1$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x, t) \in \{(x, 1), (a, t)\}$. The corresponding nonequivariant notion was introduced by Michael.

Corollary

- $J(n)/O(n)$ is homeomorphic to the Banach-Mazur compactum $BM(n)$.
- $cb(\mathbb{R}^n)/\text{Aff}(n) \cong J(n)/O(n) \cong BM(n)$.
A G-space X is called strictly G-contractible, if there exist a G-homotopy $f_t : X \to X$, $t \in 0, 1$ and a G-fixed point $a \in X$ such that f_0 is the identity map of X, and $f_t(x) = a$ if and only if $(x, t) \in \{(x, 1), (a, t)\}$. The corresponding nonequivariant notion was introduced by Michael.

Corollary

- $J(n)/O(n)$ is homeomorphic to the Banach-Mazur compactum $BM(n)$.
- $cb(\mathbb{R}^n)/\text{Aff}(n) \cong J(n)/O(n) \cong BM(n)$.
Special Case of $exp S^1$

Denote $exp_0 S^1 = (exp S^1) \setminus \{S^1\}$.

Corollary (Ant., 2007, Topology Appl.)

$$(exp_0 S^1)/S^1 \simeq L_0(2)/S^1.$$

Corollary (Toruńczyk-West, 1978)

$(exp_0 S^1)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(Q, 2)$.

Proof [Ant., 2007, Topology Appl.]

Since $(exp_0 S^1)/S^1 \simeq L_0(2)/S^1$ and $L_0(2)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(Q, 2)$ (Ant., 2000, Fund. Math.)
Special Case of $exp S^1$

Denote $exp_0 S^1 = (exp S^1) \setminus \{S^1\}$.

Corollary (Ant., 2007, Topology Appl.)

$$(exp_0 S^1)/S^1 \cong L_0(2)/S^1.$$

Corollary (Toruńczyk-West, 1978)

$(exp_0 S^1)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(Q, 2)$.

Proof [Ant., 2007, Topology Appl.]

Since $(exp_0 S^1)/S^1 \cong L_0(2)/S^1$ and $L_0(2)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(Q, 2)$ (Ant., 2000, Fund. Math.)
Special Case of $\exp S^1$

Denote $\exp_0 S^1 = (\exp S^1) \setminus \{S^1\}$.

Corollary (Ant., 2007, Topology Appl.)

\[(\exp_0 S^1)/S^1 \cong L_0(2)/S^1.\]

Corollary (Toruńczyk-West, 1978)

\[(\exp_0 S^1)/S^1 \text{ is a } Q\text{-manifold Eilenberg-MacLane space } K(\mathbb{Q}, 2).\]

Proof [Ant., 2007, Topology Appl.]

Since $(\exp_0 S^1)/S^1 \cong L_0(2)/S^1$ and $L_0(2)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q}, 2)$ (Ant., 2000, Fund. Math.)
Special Case of $\exp S^1$

Denote $\exp_0 S^1 = (\exp S^1) \setminus \{S^1\}$.

Corollary (Ant., 2007, Topology Appl.)

$$\frac{(\exp_0 S^1)}{S^1} \cong \frac{L_0(2)}{S^1}.$$

Corollary (Toruńczyk-West, 1978)

$(\exp_0 S^1)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q}, 2)$.

Proof [Ant., 2007, Topology Appl.]

Since $(\exp_0 S^1)/S^1 \cong L_0(2)/S^1$ and $L_0(2)/S^1$ is a Q-manifold Eilenberg-MacLane space $K(\mathbb{Q}, 2)$ (Ant., 2000, Fund. Math.)
Corollary (Ant., 2007, Topology Appl.)

- \((\exp_0 S^1)/\mathcal{O}(2) \cong L_0(2)/\mathcal{O}(2)\).
- \((\exp S^1)/\mathcal{O}(2) \cong BM(2)\).
Corollary (Ant., 2007, Topology Appl.)

- \((\exp_0 S^1)/O(2) \cong L_0(2)/O(2)\).
- \((\exp S^1)/O(2) \cong BM(2)\).
Equivariant conic structure of $cc(\mathbb{R}^n)$

$$OC(X) = X \times [0, \infty)/X \times \{0\},$$

the open cone over X.

$$\mathbb{R}^n = OC(S^{n-1})$$

$$cc(\mathbb{R}^n) = OC(?)$$

$$M(n) := \{ A \in cc(B^n) \mid A \cap S^{n-1} \neq \emptyset \}.$$
Equivariant conic structure of $cc(\mathbb{R}^n)$

\[OC(X) = X \times [0, \infty) / X \times \{0\}, \]

the open cone over X.

\[\mathbb{R}^n = OC(\mathbb{S}^{n-1}) \]

\[cc(\mathbb{R}^n) = OC(?) \]

\[M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap \mathbb{S}^{n-1} \neq \emptyset \}. \]
Equivariant conic structure of $cc(\mathbb{R}^n)$

$$OC(X) = X \times [0, \infty) / X \times \{0\},$$

the open cone over X.

$$\mathbb{R}^n = OC(S^{n-1})$$

$cc(\mathbb{R}^n) = OC(?)$

$$M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap S^{n-1} \neq \emptyset \}.$$
Equivariant conic structure of $cc(\mathbb{R}^n)$

$$OC(X) = X \times [0, \infty) / X \times \{0\},$$

the open cone over X.

$$\mathbb{R}^n = OC(\mathbb{S}^{n-1})$$

$$cc(\mathbb{R}^n) = OC(?)$$

$$M(n) := \{ A \in cc(\mathbb{B}^n) \mid A \cap \mathbb{S}^{n-1} \neq \emptyset \}.$$
Proposition $cc(\mathbb{R}^n)$ is $O(n)$-homeomorphic to the open cone over $M(n)$.

Proposition $cc(\mathbb{R}^n)/K$ is homeomorphic to the open cone over $M(n)/K$.
Proposition

\(cc(\mathbb{R}^n) \) is \(O(n) \)-homeomorphic to the open cone over \(M(n) \).

Proposition

\(cc(\mathbb{R}^n)/K \) is homeomorphic to the open cone over \(M(n)/K \).
Motivation Affine group action on $cb(\mathbb{R}^n)$ Global Slices The John ellipsoid Computing $J(n)$ The Banach-Mazur compacta

Proposition

$cc(\mathbb{R}^n)$ is $O(n)$-homeomorphic to the open cone over $M(n)$.

Proposition

$cc(\mathbb{R}^n)/K$ is homeomorphic to the open cone over $M(n)/K$.
Theorem

(a) for a closed subgroup $K \subset O(n)$ that acts nontransitively on S^{n-1}, the K-fixed point set $M(n)^K$ is homeomorphic to the Hilbert cube.

(b) for a closed subgroup $K \subset O(n)$ that acts nontransitively on S^{n-1}, the K-orbit space $M(n)/K$ is homeomorphic to the Hilbert cube.

(c) for any closed subgroup $K \subset O(n)$, the K-orbit space $M_0(n)/K$ is a Q-manifold.

Corollary

$M(n)/O(n) \cong BM(n)$
Theorem

(a) for a closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-fixed point set $M(n)^K$ is homeomorphic to the Hilbert cube.

(b) for a closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-orbit space $M(n)/K$ is homeomorphic to the Hilbert cube.

(c) for any closed subgroup $K \subset O(n)$, the K-orbit space $M_0(n)/K$ is a Q-manifold.

Corollary

$M(n)/O(n) \cong BM(n)$
Theorem

- \(cc(\mathbb{B}^n)/O(n) \) is the cone over the Banach-Mazur compactum BM\((n)\).
- \(cc(\mathbb{R}^n)/O(n) \) is the open cone over the Banach-Mazur compactum BM\((n)\).

Theorem

For every closed subgroup \(K \subset O(n) \) that acts non-transitively on \(S^{n-1} \), \(cc(\mathbb{R}^n) \) satisfies the \(K \)-equivariant DDP: for every \(\varepsilon > 0 \), there exist \(K \)-maps, \(f_\varepsilon, h_\varepsilon : cc(\mathbb{R}^n) \rightarrow cc(\mathbb{R}^n) \), \(\varepsilon \)-close to the identity map of \(cc(\mathbb{R}^n) \) and such that \(\text{Im} f_\varepsilon \cap \text{Im} h_\varepsilon = \emptyset \).
Theorem

- \(\text{cc}(\mathbb{B}^n)/O(n) \) is the cone over the Banach-Mazur compactum \(BM(n) \).
- \(\text{cc}(\mathbb{R}^n)/O(n) \) is the open cone over the Banach-Mazur compactum \(BM(n) \).

Theorem

For every closed subgroup \(K \subset O(n) \) that acts non-transitively on \(S^{n-1} \), \(\text{cc}(\mathbb{R}^n) \) satisfies the \(K \)-equivariant DDP: for every \(\varepsilon > 0 \), there exist \(K \)-maps, \(f_\varepsilon, h_\varepsilon : \text{cc}(\mathbb{R}^n) \to \text{cc}(\mathbb{R}^n) \), \(\varepsilon \)-close to the identity map of \(\text{cc}(\mathbb{R}^n) \) and such that \(\text{Im} f_\varepsilon \cap \text{Im} h_\varepsilon = \emptyset \).
Motivation

Affine group action on $cb(\mathbb{R}^n)$

Global Slices

The John ellipsoid

Computing $J(n)$

The Banach-Mazur compacta

Theorem

- $cc(\mathbb{B}^n)/O(n)$ is the cone over the Banach-Mazur compactum $BM(n)$.
- $cc(\mathbb{R}^n)/O(n)$ is the open cone over the Banach-Mazur compactum $BM(n)$.

Theorem

For every closed subgroup $K \subset O(n)$ that acts non-transitively on \mathbb{S}^{n-1}, $cc(\mathbb{R}^n)$ satisfies the K-equivariant DDP: for every $\varepsilon > 0$, there exist K-maps, $f_\varepsilon, h_\varepsilon : cc(\mathbb{R}^n) \rightarrow cc(\mathbb{R}^n)$, ε-close to the identity map of $cc(\mathbb{R}^n)$ and such that $\text{Im} f_\varepsilon \cap \text{Im} h_\varepsilon = \emptyset$.
Theorem

For every closed subgroup $K \subset O(n)$ that acts non transitively on \mathbb{S}^{n-1}, the K-orbit space

$$cc(\mathbb{R}^n)/K$$

is homeomorphic to the punctured Hilbert cube $Q_0 = Q \setminus \{\ast\}$.
Motivation Affine group action on $cb(\mathbb{R}^n)$ Global Slices The John ellipsoid Computing $J(n)$ The Banach-Mazur compacta

Proof

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$-AR then $X / G \in$ AR (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu : cc(\mathbb{R}^n) \to [0, \infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an $O(n)$-invariant CE-map.
- The induced map $\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}$.

HYPERSPACES OF COMPACT CONVEX SETS
Proof

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$-AR then $X/G \in$AR (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu : cc(\mathbb{R}^n) \to [0, \infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an $O(n)$-invariant CE-map.
- The induced map $\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}$.
Proof

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$-AR then $X/G \in$AR (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
 - Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
 - The map $\nu : cc(\mathbb{R}^n) \to [0, \infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an $O(n)$-invariant CE-map.
 - The induced map $\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]$ is a CE-map.
 - If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}$.

HYPERSPACES OF COMPACT CONVEX SETS
Proof

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure
- If $X \in G$-AR then $X/G \in$ AR (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu : cc(\mathbb{R}^n) \to [0, \infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an $O(n)$-invariant CE-map.
- The induced map $\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}$.

HYPERSPACES OF COMPACT CONVEX SETS
Proof

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$-AR then $X/G \in$ AR (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu : cc(\mathbb{R}^n) \to [0, \infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an $O(n)$-invariant CE-map.
- The induced map $\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}$.
Proof

- \(cc(\mathbb{R}^n)\) is a \(K\)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G\)-AR then \(X/G \in AR\) (Ant., Math. USSR Sbornik, 1988)
- \(cc(\mathbb{R}^n)/K\) satisfies the DDP (the preceding theorem).
- Thus, \(cc(\mathbb{R}^n)/K\) is a contractible \(Q\)-manifold.
- The map \(\nu : cc(\mathbb{R}^n) \to [0, \infty)\) defined by \(\nu(A) = \max_{a \in A} \|a\|\) is an \(O(n)\)-invariant CE-map.
- The induced map \(\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]\) is a CE-map.
- If there is a CE-map \(f : M \to Y\) from a \(Q\)-manifold to an ANR, then \(M \cong Q \times Y\) (R.D. Edwards).
- \(cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}\).
Proof

- $cc(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure
- If $X \in G$-AR then $X/G \in$ AR (Ant., Math. USSR Sbornik, 1988)
- $cc(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cc(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The map $\nu : cc(\mathbb{R}^n) \to [0, \infty)$ defined by $\nu(A) = \max_{a \in A} \|a\|$ is an $O(n)$-invariant CE-map.
- The induced map $\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty]$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then
 $M \cong Q \times Y$ (R.D. Edwards).
- $cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\}$.
Proof

- \(cc(\mathbb{R}^n) \) is a \(K \)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G \)-AR then \(X/G \in AR \) (Ant., Math. USSR Sbornik, 1988)
- \(cc(\mathbb{R}^n)/K \) satisfies the DDP (the preceding theorem).
- Thus, \(cc(\mathbb{R}^n)/K \) is a contractible \(Q \)-manifold.
- The map \(\nu : cc(\mathbb{R}^n) \to [0, \infty) \) defined by \(\nu(A) = \max_{a \in A} \|a\| \) is an \(O(n) \)-invariant CE-map.
- The induced map \(\tilde{\nu} : cb(\mathbb{R}^n)/K \to [0, \infty) \) is a CE-map.
- If there is a CE-map \(f : M \to Y \) from a \(Q \)-manifold to an ANR, then \(M \cong Q \times Y \) (R.D. Edwards).
- \(cc(\mathbb{R}^n)/K \cong Q \times [0, \infty) \cong Q \setminus \{\ast\} \).
Orbit spaces of $cb(\mathbb{R}^n)$

Theorem

For every closed subgroup $K \subset O(n)$ that acts non-transitively on \mathbb{S}^{n-1}, the K-orbit space $cb(\mathbb{R}^n)/K$ is a Q-manifold homeomorphic to the product $Q \times \frac{\text{Aff}(n)/O(n)}{K}$.
Proof

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$-AR then $X/G \in AR$ (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an $\text{Aff}(n)$-equivariant CE-map.
- The induced map $\tilde{j} : cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{\text{Aff}(n)/O(n)}{K}$.
Proof

- \(cb(\mathbb{R}^n)\) is a \(K\)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G\)-AR then \(X/G \in \text{AR}\) (Ant., Math. USSR Sbornik, 1988)
- \(cb(\mathbb{R}^n)/K\) satisfies the DDP (the preceding theorem).
- Thus, \(cb(\mathbb{R}^n)/K\) is a contractible \(Q\)-manifold.
- The slicing map \(j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)\) is an \(\text{Aff}(n)\)-equivariant CE-map.
- The induced map \(\tilde{j} : cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K}\) is a CE-map.
- If there is a CE-map \(f : M \to Y\) from a \(Q\)-manifold to an ANR, then \(M \cong Q \times Y\) (R.D. Edwards).
- \(cb(\mathbb{R}^n)/K \cong Q \times \frac{\text{Aff}(n)/O(n)}{K}\).
Proof

- \(cb(\mathbb{R}^n) \) is a \(K \)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G \)-AR then \(X / G \in AR \) (Ant., Math. USSR Sbornik, 1988)
- \(cb(\mathbb{R}^n) / K \) satisfies the DDP (the preceding theorem).
- Thus, \(cb(\mathbb{R}^n) / K \) is a contractible \(Q \)-manifold.
- The slicing map \(j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n) / O(n) \) is an \(\text{Aff}(n) \)-equivariant CE-map.
- The induced map \(\tilde{j} : cb(\mathbb{R}^n) / K \to \frac{\text{Aff}(n) / O(n)}{K} \) is a CE-map.
- If there is a CE-map \(f : M \to Y \) from a \(Q \)-manifold to an ANR, then \(M \cong Q \times Y \) (R.D. Edwards).
- \(cb(\mathbb{R}^n) / K \cong Q \times \frac{\text{Aff}(n) / O(n)}{K} \).
Proof

- \(cb(\mathbb{R}^n) \) is a \(K \)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G \)-AR then \(X/G \in AR \) (Ant., Math. USSR Sbornik, 1988)
- \(cb(\mathbb{R}^n)/K \) satisfies the DDP (the preceding theorem).
- Thus, \(cb(\mathbb{R}^n)/K \) is a contractible \(Q \)-manifold.
- The slicing map \(j: cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n) \) is an \(\text{Aff}(n) \)-equivariant CE-map.
- The induced map \(\tilde{j}: cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K} \) is a CE-map.
- If there is a CE-map \(f: M \to Y \) from a \(Q \)-manifold to an ANR, then \(M \cong Q \times Y \) (R.D. Edwards).
- \(cb(\mathbb{R}^n)/K \cong Q \times \frac{\text{Aff}(n)/O(n)}{K} \).
Proof

- \(cb(\mathbb{R}^n) \) is a \(K \)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G \)-AR then \(X/G \in \text{AR} \) (Ant., Math. USSR Sbornik, 1988)
- \(cb(\mathbb{R}^n)/K \) satisfies the DDP (the preceding theorem).
- Thus, \(cb(\mathbb{R}^n)/K \) is a contractible \(Q \)-manifold.
- The slicing map \(j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n) \) is an \(\text{Aff}(n) \)-equivariant CE-map.
- The induced map \(\tilde{j} : cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K} \) is a CE-map.
- If there is a CE-map \(f : M \to Y \) from a \(Q \)-manifold to an ANR, then \(M \cong Q \times Y \) (R.D. Edwards).
- \(cb(\mathbb{R}^n)/K \cong \frac{Q \times \text{Aff}(n)/O(n)}{K} \).
Proof

- \(cb(\mathbb{R}^n) \) is a \(K \)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G \)-AR then \(X/G \in \text{AR} \) (Ant., Math. USSR Sbornik, 1988)
- \(cb(\mathbb{R}^n)/K \) satisfies the DDP (the preceding theorem).
- Thus, \(cb(\mathbb{R}^n)/K \) is a contractible \(Q \)-manifold.
- The slicing map \(j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n) \) is an \(\text{Aff}(n) \)-equivariant CE-map.
- The induced map \(\tilde{j} : cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K} \) is a CE-map.
- If there is a CE-map \(f : M \to Y \) from a \(Q \)-manifold to an ANR, then \(M \cong Q \times Y \) (R.D. Edwards).
- \(cb(\mathbb{R}^n)/K \cong Q \times \frac{\text{Aff}(n)/O(n)}{K} \).
Proof

- \(cb(\mathbb{R}^n)\) is a \(K\)-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If \(X \in G\)-AR then \(X/G \in \text{AR}\) (Ant., Math. USSR Sbornik, 1988)
- \(cb(\mathbb{R}^n)/K\) satisfies the DDP (the preceding theorem).
- Thus, \(cb(\mathbb{R}^n)/K\) is a contractible \(Q\)-manifold.
- The slicing map \(j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)\) is an \(\text{Aff}(n)\)-equivariant CE-map.
- The induced map \(\tilde{j} : cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K}\) is a CE-map.
- If there is a CE-map \(f : M \to Y\) from a \(Q\)-manifold to an ANR, then \(M \cong Q \times Y\) (R.D. Edwards).
- \(cb(\mathbb{R}^n)/K \cong Q \times \frac{\text{Aff}(n)/O(n)}{K}\).
Proof

- $cb(\mathbb{R}^n)$ is a K-AR since it admits an equivariant convex structure (Ant., Topol. Appl., 2005)
- If $X \in G$-AR then $X/G \in$AR (Ant., Math. USSR Sbornik, 1988)
- $cb(\mathbb{R}^n)/K$ satisfies the DDP (the preceding theorem).
- Thus, $cb(\mathbb{R}^n)/K$ is a contractible Q-manifold.
- The slicing map $j : cb(\mathbb{R}^n) \to E(n) = \text{Aff}(n)/O(n)$ is an $\text{Aff}(n)$-equivariant CE-map.
- The induced map $\tilde{j} : cb(\mathbb{R}^n)/K \to \frac{\text{Aff}(n)/O(n)}{K}$ is a CE-map.
- If there is a CE-map $f : M \to Y$ from a Q-manifold to an ANR, then $M \cong Q \times Y$ (R.D. Edwards).
- $cb(\mathbb{R}^n)/K \cong Q \times \frac{\text{Aff}(n)/O(n)}{K}$.
Motivation Affine group action on $cb(\mathbb{R}^n)$ Global Slices The John ellipsoid Computing $J(n)$ The Banach-Mazur compacta

HYPERSPACES OF COMPACT CONVEX SETS
T H A N K S