GRADUATE MATHEMATICS
2016–2017

Department of Mathematics
University of Utah
155 South 1400 East, JWB 233
Salt Lake City, UT 84112-0090, USA

Chair: Peter Trapa

Associate Chair: Nathan Smale

Assistant Chair: Kelly MacArthur

Director of Graduate Studies: Karl Schwede

Graduate Program Coordinator: Paula Tooman

Graduate Committee:
Yekaterina Epshteyn
Lajos Horváth
Srikanth Iyengar
Jim Keener
Karl Schwede (Chair)
Paula Tooman
Kevin Wortman

Graduate Recruitment Subcommittee:
Fred Adler
Tom Alberts
Christopher Hacon
Christel Hohenegger
Gordan Savin
Karl Schwede
Paula Tooman
Kevin Wortman
Jingyi Zhu (Chair)

Cover: Utah slot canyon

Editors: Nelson H. F. Beebe, Karl Schwede, and Paula Tooman
Contents

1 General information ... 1
 1.1 A brief history ... 1
 1.2 Departmental research facilities 2
 1.3 Additional research facilities 3

2 Important dates ... 5
 2.1 University dates ... 5
 2.2 Thesis related dates 5
 2.3 Departmental dates 5

3 Graduate study .. 7
 3.1 Relevant groups and people in the Department 7
 3.1.1 Director of Graduate Studies 7
 3.1.2 Graduate Program Coordinator 7
 3.1.3 Graduate Committee 7
 3.1.4 Graduate Student Advisory Committee (GSAC) 8
 3.2 Benefits and opportunities 8
 3.2.1 Tuition and tuition benefit 8
 3.2.1.1 Differential tuition 9
 3.2.2 Health insurance 9
 3.2.3 Parental leave 9
 3.2.4 Funded travel for graduate students 10
 3.3 Advisors and committees 11
 3.3.1 Initial academic mentors 11
 3.3.2 Advisors .. 11
 3.3.3 Committee composition 11
 3.3.4 When to form your committee 12
 3.3.5 Role of the supervisory committee 12
 3.3.6 What is a program of study? 12
 3.3.7 Deviation from requirements 13
 3.4 Exams .. 13
 3.4.1 Written preliminary and qualifying examinations 13
 3.4.1.1 Exam topics 13
 3.4.1.2 When to take exams 14
 3.4.1.3 Maximum exam attempts 14
 3.4.1.4 Responsible faculty 15
3.4.1.5 Nature of the examinations ... 15
3.4.1.6 Grading of the tests .. 15
3.4.1.7 Announcement of results ... 15
3.4.1.8 Appeals .. 16
3.4.2 Oral qualifying examinations .. 16
3.4.2.1 When to schedule oral qualifying exams 17
3.4.3 Final oral examination .. 17
3.5 Evaluation and dismissal of graduate students 17
3.5.1 Academic performance ... 17
3.5.2 Appeals .. 18
3.5.3 Guidelines on the student/advisor relationship 19
3.5.4 Teaching Assistant performance 19
3.6 Combining Master’s and Ph.D. programs 20
3.6.1 Continuing to Ph.D. program from Master’s program 20
3.6.2 Earning a Master’s degree while in the Ph.D. program 20
3.7 Timelines for normal academic progress 20
3.7.1 Masters of Arts and Master of Science degrees 20
3.7.2 Ph.D. degree .. 21
3.8 Outside employment .. 22
3.9 Gaining other skills .. 22
3.9.1 Courses from other departments 23
3.10 Applying to graduate study ... 23
3.11 Housing in Salt Lake City .. 23

4 Degree requirements .. 25
4.1 Master of Arts and Master of Science degrees 25
4.1.1 Graduate School requirements 25
4.1.2 Departmental requirements — pure mathematics 25
4.1.2.1 Course requirements — pure mathematics 25
4.1.2.2 Graduation requirements — pure mathematics 26
4.1.3 Departmental requirements — applied mathematics 27
4.1.3.1 Course requirements — applied mathematics 27
4.1.3.2 Graduation requirements — applied mathematics 27
4.1.4 Time limit .. 27
4.1.5 Transfer credit .. 27
4.2 Master of Statistics (Mathematics) program 27
4.2.1 Prerequisites ... 28
4.2.2 Course requirements .. 28
4.3 Master of Science in Mathematics Teaching 28
4.4 Master of Science in Computational Engineering and Science 29
4.5 Professional Master of Science and Technology, Computational and Data Science Track 29
4.6 Doctor of Philosophy degree .. 30
4.6.1 Graduate School requirements 30
4.6.2 Departmental requirements ... 30
4.6.2.1 Advisors and Supervisory Committee 30

Last revision: September 10, 2016, 18:08 MDT
4.6.2.2 Course requirements ... 30
4.6.2.3 Written preliminary examinations 30
4.6.2.4 Oral qualifying examination 31
4.6.2.5 Foreign language requirements 31
4.6.2.6 Final oral examination 31
4.6.2.7 Teaching requirements of Ph.D. candidate 31
4.6.3 Time limit .. 31
4.6.4 Graduate School schedule for the Ph.D. degree 31

5 Syllabi for qualifying examinations 33

5.1 Algebra ... 33
 5.1.1 Topics: Math 6310, Modern Algebra I 33
 5.1.2 Topics: Math 6320, Modern Algebra II 33
 5.1.3 Texts ... 34
5.2 Applied mathematics .. 34
 5.2.1 Topics ... 34
 5.2.2 Texts ... 35
5.3 Differential equations ... 35
 5.3.1 Ordinary and partial differential equations 35
 5.3.1.1 ODE topics ... 35
 5.3.1.2 ODE texts ... 36
 5.3.2 Partial differential equations 36
 5.3.2.1 PDE topics ... 36
 5.3.2.2 PDE texts ... 37
5.4 Geometry and topology ... 37
 5.4.1 Geometry and topology topics 37
 5.4.2 Geometry and topology texts 38
 5.4.3 Algebraic topology topics 38
 5.4.4 Algebraic topology texts 39
5.5 Numerical analysis .. 39
 5.5.1 Topics ... 39
 5.5.2 Texts ... 39
5.6 Probability .. 40
 5.6.1 Topics ... 40
 5.6.2 Texts ... 40
5.7 Real and complex analysis ... 41
 5.7.1 Topics ... 41
 5.7.2 Texts ... 41
5.8 Statistics ... 42
 5.8.1 Texts ... 42

6 Recent Ph.D. students ... 43

Last revision: September 10, 2016, 18:08 MDT
1 General information

This chapter briefly describes the Mathematics Department at the University of Utah, and the research facilities available to its members, within the department, elsewhere on campus, and at national computer laboratories.

1.1 A brief history

The University of Utah is a state tax-supported, coeducational institution. Founded in 1850, it is the oldest state university west of the Missouri River. In recent years, the Graduate School has been awarding approximately 600 Ph.D. degrees per year. The University faculty consists of approximately 3100 members.

The Mathematics Department of the University of Utah now awards, on the average, about eight Ph.D. degrees per year. Over 250 people have earned this degree since 1954. Most of them have positions in state and private universities, but some hold nonacademic positions. Six have been awarded Sloan Research Fellowships, 12 have been visiting members of the Institute for Advanced Study in Princeton, and five have been awarded National Science Foundation Postdoctoral Fellowships.

Our graduate faculty has more than 50 professors. Several members of the current faculty have received national awards including Sloan Fellowships and Presidential Young Investigator Awards. The University has also recognized members of our faculty with Distinguished Professor, University Distinguished Researcher, and Teaching Awards. A list of current members of the faculty is available at

http://www.math.utah.edu/people/faculty.html

The research interests of the faculty are the areas of specialization available for graduate studies. They include diverse areas in pure and applied mathematics such as algebraic geometry, commutative algebra, differential geometry, geometric group theory, geometric topology, materials and fluids, mathematical biology, mathematical cardiology, mathematical finance, mathematical physiology, number theory, numerical analysis, partial differential equations, probability and statistics, representation theory, scientific computing and imaging, and stochastic processes.

During the current year, approximately 30 members of the Mathematics faculty are associated with government-sponsored research contracts.

The University’s total student enrollment is currently about 32,000. During 2015–2016, there were 74 men and 33 women Ph.D. students in Mathematics.
Our graduate students come from many different areas of the United States, as well as from several foreign countries.

1.2 Departmental research facilities

The Marriott Library collection includes numerous books and journals of interest to mathematics researchers and scholars. Many of the journals, and journal databases, are also available electronically when accessed from inside the campus network.

The University of Utah was node four of the five founding members of the Arpanet in 1968, the precursor of the worldwide Internet today that drives world communications, commerce, entertainment, and much else. The University of Utah continues to play an important role in advanced networking research, and is a member of consortia that run the world’s fastest long-distance networks.

In 2016, the University has a 40Gb/s network backbone, with multiple 10Gb/s links to the Internet through a large firewall that guards against many of the hostile attacks that negatively impact computing and networking worldwide. Most campus buildings have 1Gb/s or 10Gb/s uplinks to the network backbone. As of Spring 2016, the Mathematics Department now enjoys a 10Gb/s connection.

There are extensive computing facilities available in the Department, including numerous multiprocessor multicore servers with 128GB of memory, and one with 1024GB of memory, all with a common filesystem for user login directories. Most users access those facilities from desktop thin-client workstations, or from remote computers via the secure-shell protocol that guarantees strong encryption of communications.

There is a huge installation of software, with more than 15,000 available programs, including numerous compilers for all major programming languages, and specialized mathematical, statistical, and scientific libraries and systems. There is also a large collection of virtual machines that provides an outstanding testbed for software portability to many different operating systems.

The main fileserver uses ZFS (Zettabyte File System) to provide highly-reliable storage, flexible management and expansion, and user-accessible read-only filesystem snapshots, taken at least daily, and hourly in the active electronic-mail system. There are generally three to four weeks of online snapshots, and that history will grow after the major fileserver upgrade planned for Fall 2016.

For reliability, the main filesystem has a live mirror in another campus building. There are nightly backups of all filesystems to holding disks that are copied to LTO-6 tapes in a 500-tape robot. Nightly ZFS snapshots are copied to a large-storage server in an off-campus datacenter for months-long retention.

A large battery backup power-conditioning system, and outside diesel generator, ensure uninterrupted computer operations, and immunity to electrical power bumps and outages.

Online documentation about our computing environment is available at

http://www.math.utah.edu/faq/

Last revision: September 10, 2016, 18:08 MDT
1.3. Additional research facilities

Further details of machine particulars are available from systems staffers in offices LCB 103, 105, and 110. Computer-facility tours for departmental members are available on request, and systems staff are always happy to offer guidance in computer purchases, and to provide short tutorials on numerous aspects of computing.

1.3 Additional research facilities

The University of Utah’s Center for High-Performance Computing (CHPC)

http://www.chpc.utah.edu/

is housed in the INSCC building adjacent to the Mathematics Department buildings.

The Center provides access to thousands of compute nodes in multiple distributed clusters with large parallel filesystem storage, as well as to advanced scientific software, through a quarterly application process that requires a brief description of the research to be performed, but, for modest computing needs, does not require payment.

Campus researchers with large computing needs, and sufficient financial resources from research grants, can also buy portions of the CHPC facilities to leverage economies of scale, and guarantee exclusive access when needed. Nodes that have been idle for some time normally move to a shared pool so that others can use them, avoiding resource waste.

CHPC is a gateway to several national computing facilities for extreme-scale computing, and hosted the National Supercomputer Conferences in Salt Lake City in 2012 and 2016.
1. General information
This chapter records links to documents recording critical dates for academic terms, thesis deadlines, training sessions, and the critical qualifying examinations.

2.1 University dates

For the most current list of dates, see:

- **Fall 2016**

- **Spring 2017**

- **Summer 2017**

It is particularly important to pay attention to when classes begin and end, and the final days to add or remove classes.

2.2 Thesis related dates

Beyond the University dates listed above, there are also critical dates that one must not miss if writing a dissertation or thesis. See

for the specific dates.

2.3 Departmental dates

- Summer Written Qualifying Exams. 15–17 August 2016.
3 Graduate study

This chapter describes the mechanical aspects of graduate work: advisors, committees, exams, and tuition.

3.1 Relevant groups and people in the Department

Before we discuss those, we list the individuals and organizations in the Department who can assist you.

3.1.1 Director of Graduate Studies

The Director of Graduate Studies, currently Karl Schwede, oversees the graduate program with the Graduate Committee. He also is a resource for questions about the program. Appeals or questions about any policy or departmental decision can generally be taken to him. You can also appeal any item further to the Department Chair or as specified in the Student Code.

3.1.2 Graduate Program Coordinator

The Graduate Program Coordinator, currently Paula Tooman, runs the graduate program on a day to day basis and helps with the necessary paperwork that must be done at various points in your degree. She is also a resource for questions about the program.

3.1.3 Graduate Committee

The Graduate Committee oversees the progress of all graduate students in the Department, and its decisions are carried out by the Director of Graduate Studies. The Graduate Committee reviews student progress annually and makes decisions about continuation of funding/continuation in the program: see Section 3.5.

The current composition of the Graduate Committee can be found at http://www.math.utah.edu/people/committees.html

Subcommittees of this committee are also in charge of various other aspects of the program, such as Funded Graduate Student Travel.
3.1.4 Graduate Student Advisory Committee (GSAC)

The Graduate Student Advisory Committee exists for the following reasons:

- to advise new and continuing graduate students concerning curricula, requirements for degrees, and other aspects of the graduate program;
- to make recommendations to the Department concerning promotion, tenure, and retention of faculty members;
- to participate in the allocation of funds from the Associated Students of the University of Utah (ASUU) supplied to the College of Science Student Council;
- to make whatever recommendations it feels appropriate concerning the graduate program to the Department of Mathematics;
- to assist the Department in making its policies and requirements fully understood by graduate students.

More information about GSAC, and its current membership, is at

http://www.math.utah.edu/gsac/

3.2 Benefits and opportunities

This section highlights benefits and opportunities available to graduate students in the Mathematics Department at the University of Utah.

3.2.1 Tuition and tuition benefit

For the current tuition costs, see

http://fbs.admin.utah.edu/income/ tuition/general-graduate/

However, most graduate students who work as a Teaching Assistant (TA), as a Research Assistant (RA), or are supported by a fellowship, are eligible for the University of Utah's tuition benefit program. For those students, there is no charge for tuition related to their program of study as long as it conforms to certain rules. Here are some key points about the program:

- You must register for between 9–12 credits (9–11 for most students who are not TAs). Students who are supported by RTG grants should register for different amounts that depend on regulations of the grant and the Graduate School.
- Ph.D. students who entered with a Bachelor’s degree have 10 semesters of tuition benefit. The benefit can be automatically extended for 2 additional semesters, if you have served as a TA for at least 4 semesters.
3.2. Benefits and opportunities

- Ph.D. students who entered with a Master’s degree have at most 8 semesters of tuition benefit. The benefit cannot be automatically extended.

- Master's degree students receive at most 4 semesters of tuition benefit. The benefit cannot be automatically extended.

- Students who are out of tuition benefit can work with their advisor and the Director of Graduate Students to appeal for more from the Graduate School. These appeals depend on the individual case and frequently are not successful. Such graduate students can also request funding from the Graduate Committee or their advisor, or a combination thereof, to cover the cost of tuition if this appeal to the Graduate School is not successful.

For more details on the Tuition Benefit program, see

http://gradschool.utah.edu/tbp/

3.2.1.1 Differential tuition

Course fees and differential tuition are typically not covered by the tuition benefit program. However, if the course is part of your program of study and approved by your advisor, you can request that the Department contribute towards covering these additional costs (depending on availability of funds). Your advisor then usually also contributes. The request, and supporting documentation from your advisor, must be made to the Director of Graduate Studies before the start of the semester. All requests are reviewed by the Department Chair and the Director of Graduate Studies.

3.2.2 Health insurance

The University of Utah sponsors a health-insurance plan at excellent rates for students, their spouses, and their dependent children under age 26. For details, see

http://www.studenthealth.utah.edu/services/

The Graduate School and the Department provide each funded graduate student with a premium subsidy that covers the full cost of group health insurance offered through United Healthcare; see

http://gradschool.utah.edu/tbp/insurance-information/

3.2.3 Parental leave

If a supported graduate student or a supported student’s spouse or eligible partner\(^1\) gives birth to a child and becomes the child’s legal guardian, or

\(^1\)as defined as an eligible partner through Human Resources

Last revision: September 10, 2016, 18:08 MDT
• adopts a child under six years of age,

then the graduate student (female or male) may request a parental leave of absence with modified duties for one semester for care-giving leave during a semester within 12 months of the child’s arrival.

Care-giving leave means that the student provides the majority of child contact hours during the student’s regular academic working hours for a period of at least 15 weeks. Typically, only one semester of leave is granted per child even if there are two graduate students in the Department who could claim parental leave for the child. In most cases, this benefit is granted at most twice for any supported graduate student.

During the leave of absence, the student has modified assigned duties. Typically, there is no teaching requirement during the period of absence. Students may still conduct research and take classes, including reading classes, but are not necessarily expected to work at the same pace for research projects. It is important that students take at least 3 credits during this semester to maintain their full-time status. During this semester, the student still receives the normal TA stipend and insurance, and, if the student does not use the tuition benefit, tuition costs for 3 credits are covered by the Department.

If a student desires, the deadlines to meet various departmental requirements (such as passing qualifying exams) can be extended by one semester upon request.

Requests for parental leave should be submitted to the Graduate Program Coordinator and are reviewed by the Chair, Associate Chair, and Director of Graduate Studies. A request for a parental leave of absence with modified duties should normally be made no fewer than three months prior to the expected arrival of the child. It is necessary to make this request in advance so that the particular arrangements of the leave can be planned. The request should specify what duties and/or research the student is planning on performing.

Students who experience a medical condition associated with pregnancy, and need accommodations recommended by their medical provider, should contact the University’s Title IX Coordinator, who then works with the student, cognizant faculty, and administration to determine what accommodations are reasonable and effective.

For more complicated situations, the Department tries to proceed in a way similar to the rules for parental leave with modified duties for faculty, as described at

http://regulations.utah.edu/academics/6-315.php

3.2.4 Funded travel for graduate students

A subcommittee of the Graduate Committee reviews requests by graduate students for funded travel. See

http://www.math.utah.edu/~epshteyn/GraduateStudentTravelFunding.pdf

Last revision: September 10, 2016, 18:08 MDT
3.3. Advisors and committees

Additionally, such students should apply to the Graduate School Graduate Student Travel Assistance Program. For other ideas for sources of funding, see the Graduate School website.

3.3 Advisors and committees

In this section, we discuss advisors, Initial Academic Mentors, and Supervisory Committees.

3.3.1 Initial academic mentors

All Ph.D. students are assigned an Initial Academic Mentor before arrival at the University of Utah. This mentor should meet with the student at least once each semester to plan initial courses. A student may request a change of Initial Academic Mentor at any time by notifying the Director of Graduate Studies and Graduate Program Coordinator. The student works with this mentor in this way until a student selects an academic advisor.

3.3.2 Advisors

Master’s degree students are assigned an advisor upon entering the program and are not assigned an Initial Academic Mentor. Once a Ph.D. student has chosen a research area, he or she should select an academic advisor. Typically, a student might do a reading course with a prospective advisor before deciding. To remain in good academic standing with the program, the Ph.D. student must select an advisor by January of the third year. It is strongly recommended, however, that the student choose an advisor much earlier, during the second year of study.

Once a student has an advisor, it is the student’s responsibility to meet with the advisor and design a program of study. The student should meet with the chosen advisor at the beginning of each academic year to plan that year’s work, and at least once a semester to discuss progress. Typically, this is done much more frequently. The responsibility for setting these meetings rests with the student. Advisors are requested by the Director of Graduate Studies to make brief comments on each student’s progress each year.

A student may request a change of advisor at any time by notifying the Director of Graduate Studies and Graduate Program Coordinator. See also Section 3.5 on termination of the student–advisor relationship.

3.3.3 Committee composition

The following describes the members of a Master's degree or Ph.D. committee.

- The Committee Chair (advisor) is usually chosen to be a faculty member whose research area is the potential research area indicated by the student. If the student expresses a personal choice, and if the faculty member suggested is
not already overworked with advising, the requested person is normally ap-
pointed.

- The Master’s degree committee shall consist of three faculty members, the
majority of whom must be regular faculty in the Department of Mathematics.

- The Ph.D. committee shall consist of five faculty members. At least three
must be regular faculty in the Department of Mathematics, and at least one
must be from another department. In some cases, faculty at other institutions can also
fill the role of an outside committee member. To arrange this, a curriculum vitae
of the outside member must be sent to the Graduate Program Coordinator who
then requests approval from the Graduate School for this outside member.

- If the student’s interests change, the committee makeup is modified appropri-
ately by the Director of Graduate Studies, after consulting the student and
committee.

3.3.4 When to form your committee

For Master’s degree students, the Supervisory Committee should be formed during
the first year of study. For Ph.D. students, the Supervisory Committee is typically
formed after passing written qualifying exams but it can be done sooner. This
committee must be formed prior to taking the oral exam. It is important that this
committee is formed as soon as feasible and must be done by January of the third
year in the program.

3.3.5 Role of the supervisory committee

The function of the advisor and the Supervisory Committee is to:

- Advise the student regarding a program of study.

- Evaluate the student’s progress in the chosen program of study that is worked
out with the committee shortly after the committee is formed.

- Set the ground rules and evaluate the preliminary and final oral examinations.
 This should be done in consultation with the student.

- Review any requests for changes or waivers in the usual requirements.

3.3.6 What is a program of study?

A program of study is the collection of courses and thesis work that makes up your
academic record and that forms the basis of your graduation. You officially add
courses to your program of study at certain points in your academic career.
3.3.7 Deviation from requirements

A majority of the student’s committee is sufficient to approve (or disapprove) the program of study, or a petition for an exemption for some requirement. The student, or a dissenting member, can appeal any decision to the Director of Graduate Studies. Such an appeal is usually reviewed by the departmental Graduate Committee. Appeals or recommendations that explicitly or implicitly ask for a deviation from Graduate School policy must be reviewed by the Dean of the Graduate School.

3.4 Exams

Graduate students are required to take both written and oral exams, but some Master’s degree programs require only written or oral exams.

3.4.1 Written preliminary and qualifying examinations

All Ph.D. students are required to pass at least three of the following written qualifying exams. Students in the Master’s degree program may be required to pass up to 2 written exams, depending on the exact program that they are a part of.

The written Ph.D. preliminary examinations are the same as the Master’s qualifying examinations. The written qualifying examinations are given in January and August, usually in the week before the beginning of classes.

3.4.1.1 Exam topics

The written part of the Ph.D. preliminary examination in mathematics consists of three tests, in the following eight areas:

- Algebra
- Applied Mathematics
- Differential Equations
- Geometry and Topology
- Numerical Analysis
- Probability
- Real and Complex Analysis
- Statistics

Syllabi for these qualifying exams are available later in this document: see Chapter 5. Students must recognize that the tests are based on the material in the syllabus, not on the material in the preceding year’s course on the subject. The student is responsible for preparing to be examined in all of the topics listed on the
syllabus, whether or not all of the subjects were covered in a particular course on the subject.

Students should choose their tests in consultation with their advisor(s) or Initial Academic Mentor. One purpose of this consultation is to ensure sufficient breadth in the choice of tests.

3.4.1.2 When to take exams

In order to pass the written qualifying examinations, a Ph.D. student must pass three tests and a Master's student whose committee has selected the written qualifying exam option must pass two tests. Master's degree students who are doing the written qualifying exam option should take the qualifying exams as soon as they have the necessary background. Ph.D. students are expected to

- take at least two qualifying exams in August before the beginning of their second year;
- pass at least two qualifying exams by August before their third year; and
- pass all three by January of their third year.

Ph.D. students whose background is not sufficient to complete the exams on this schedule should discuss their plans with their advisors. After consulting their advisors, students can submit a request to the Graduate Committee to take the exams on a delayed schedule. All such requests are approved, as long there is a clear plan to complete the exams in a reasonable time period, given the student’s background.

The Graduate Committee reviews students’ progress towards completing their written exams in January of their second year. Each student’s renewal-of-support letter for that year must include the date that the Graduate Committee expects the student to complete written exams if there is a deviation from the schedule listed above. Failure to pass by this specified date typically results in termination from the graduate program.

3.4.1.3 Maximum exam attempts

A student is permitted to take a maximum of three exams each exam period, and may repeat a failed exam only once. Students who have taken graduate courses equivalent to our graduate qualifier preparation sequences may take the qualifying exams early. However, the failure of an exam in August before the student’s first year does not count towards the two-attempt maximum. Students are strongly advised to do adequate preparation before taking the exams.

A student who wishes to remain in the program but has either

- failed a written qualifying exam twice, or
- has not passed the written qualifying exams by the date specified in the most recent renewal of support letter.
may petition the Graduate Committee for an additional and final attempt, if it is done promptly after the student becomes academically deficient. Such petitions are not always granted.

The petition must include a letter from the student and a letter from the student’s advisor or academic mentor, but may include other documentation. The Graduate Committee then considers the petition on a case-by-case basis. Criteria that are considered include: extenuating circumstances, performance on previous qualifying exams, performance in the class associated with the qualifying exam, and overall academic performance. Whatever the outcome of the petition, the student is always informed of the Graduate Committee’s decision in writing.

3.4.1.4 Responsible faculty

The Department Chair appoints a member of the faculty (usually the Director of Graduate Studies) to make the arrangements for the written qualifying examinations of each academic year. That person selects two members of the faculty, in each of the various areas of the examination, to participate in the preparation and evaluation of the examinations.

3.4.1.5 Nature of the examinations

The test in each area is a written test of three hours duration. The level of the test should be comparable to that of the first-year graduate course in the field. The faculty members responsible for a given test should check to see that the topics covered on the test are compatible with the syllabus. Copies of past examinations are available at

http://math.utah.edu/grad/qualexams.html

All examinations are proctored.

3.4.1.6 Grading of the tests

After all the tests in a given area have been graded, the persons responsible for the test decide what is to be a passing score on the examination; in doing so, it is expected that they confer with, and enlist the aid of, their colleagues in the area of the examination. *Student identities are not revealed to the graders.*

3.4.1.7 Announcement of results

Under normal circumstances, the student is informed within one week after the end of the examinations of the passing score on each test and is allowed to examine his/her tests.

Last revision: September 10, 2016, 18:08 MDT
3.4.1.8 Appeals

The Graduate Committee handles all appeals. In particular, grading of examinations may be disputed, and exceptions to these rules can be granted. A student wishing to make an appeal does so through his or her Initial Academic Mentor, advisor, Supervisory Committee or the Director of Graduate Studies. Those faculty members assist the student in taking the necessary actions. A student may also enlist the aid of the Graduate Student Advisory Committee (GSAC) to help in the process: see Subsection 3.1.4.

3.4.2 Oral qualifying examinations

Ph.D. students are required to take an oral qualifying examination, and some Master’s degree students may also be required to take such an exam, depending on their program. Students who fail the oral qualifying examination may be given a second examination at the discretion of the student’s Supervisory Committee. Oral examinations may only be repeated once.\footnote{It is possible to appeal this, but such appeals must be granted by both the Graduate Committee and the Dean of the Graduate School.}

Responsibility for scheduling the examination rests jointly with the student and his/her advisor. The oral examination is not a test of specific subject-matter retention; rather it is designed to measure the student’s overall mathematics maturity and breadth, and his/her skill at chalkboard exposition and verbal exchange. In general, the oral examination is concentrated on the area of specialization of the student and related areas. On the other hand, this oral examination is not a thesis defense, and should be conducted before much thesis research has been done.

The candidate initiates scheduling, with his/her Supervisory Committee’s approval. The Supervisory Committee sets its own ground rules for Ph.D. oral qualifying exams. The student should arrange with the Committee the scope of questions, and how the exam is conducted. Most Mathematics oral qualifying exams have followed one of two plans:

- The student answers questions based on his/her graduate courses. Students taking this type of exam should, in consultation with their Supervisory Committee, prepare a written syllabus of the topics that are covered on the exam. To avoid becoming academically deficient, students must have scheduled this exam by December of their third year and passed it by the date specified in their most recent letter of support (typically by August before their fourth year, unless prior arrangements have been made).

- The student makes a presentation of a background topic related to his/her proposed research, or directly on his/her preliminary research. The student proposes the plan for the rest of the Ph.D. research. The student answers questions based on the presentation/proposal/graduate courses. To avoid becoming academically deficient, students must have scheduled this exam by December of their third year and passed it by the date specified in their most recent letter of support.
3.4.2.1 When to schedule oral qualifying exams

Students should fix a tentative date (for example “Spring Semester 2017”) for their oral exam before the Graduate Committee meets to review their progress in January of their third year. The Director of Graduate Studies should be informed if there is a change to this date. Annual renewal-of-support letters include expectations of when students should pass their oral qualifying exam. Failure to meet the deadline in this or other letters may lead to termination from the program.

3.4.3 Final oral examination

The final oral examination for Ph.D. students, and some Master’s degree students, sometimes called the “Thesis Defense,” is distinct from the oral qualifying examination. This examination consists of a public thesis defense. The Supervisory Committee meets in private after the defense to vote on final approval.

3.5 Evaluation and dismissal of graduate students

At the beginning of Spring Semester, all graduate students are evaluated by the Graduate Committee on the progress in their study toward a degree. The Graduate Committee also evaluates teaching performance at this time. There are two issues being decided:

- continuation in the program; and
- continued financial support in the form of a Teaching Assistantship.

It is possible that a student may be allowed to continue progressing towards a degree without funding, for instance, without a Teaching or Research Assistantship. A student may also be responsible for his or her tuition costs, especially if the student has used up the tuition benefit: see Subsection 3.2.1.

Decisions to continue or award Teaching Assistantships, and to continue in the program, are based on both teaching performances and on academic performance. Notification of renewals or nonrenewals are distributed by April 15. These letters also contain individualized academic performance expectations for each student for future years.

3.5.1 Academic performance

The academic requirements, specified throughout the Graduate Bulletin, are considered by the Graduate Committee in Spring Semester for students in the graduate program. Below is a list of common conditions that cause a student to be academically deficient within the Ph.D. program. If a student satisfies any of the conditions...
below, then the student is academically deficient unless there is a previous written arrangement for deviation from the corresponding requirement.

- Failing a written qualifying exam on the same subject twice. See Maximum Exam Attempts.

- Failure to have passed at least two written qualifying exams before the third year of study. See When to take exams.

- Failure to have passed all written qualifying exams before January of the third year. See When to take exams.

- Failure to have tentatively scheduled, by January in the third year, the oral qualifying exam. The exam does not have to be taken by this point, it should just be tentatively scheduled in consultation with the student’s advisor and Supervisory Committee. See When to schedule oral qualifying exams.

- Failure to have passed oral or written qualifying exams by the time specified in the most-recent letter of support (or other most-recent letter from the Graduate Committee).

- Failure to graduate by the date specified in the most-recent letter of support (or other most-recent letter from the Graduate Committee).

- Failure to meet other individualized requirements specified in letters of support or other letters written by the Graduate Committee or Director of Graduate Studies.

- Failure to select an advisor by January of their third year: see Advisors.

- Failure to maintain a 3.0 grade point average (required by the Graduate School if the student is to continue to receive the tuition benefit).

- Failure to conduct research at a level needed to complete a Ph.D. See also the guidelines on the student/advisor relationship in Subsection 3.5.3.

3.5.2 Appeals

Students who fall behind in any of these categories, or who fail to meet other requirements specified for their program, must promptly appeal to the Graduate Committee if they wish to continue in the program. Such deficiencies may be pointed out to the student in the annual letter of support, or in most cases, even earlier.

The content of the appeal should include a letter to the Graduate Committee explaining a plan to correct the deficiency. It should also include a letter from the student’s advisor or academic mentor and may include additional evidence. Appeals are considered by the Graduate Committee on a case-by-case basis. The Graduate Committee may accept the plan to correct the deficits, accept the plan after revisions, decide to dismiss the student, or withdraw financial support. The student may also be put on a schedule with more-frequent evaluations by the Graduate Committee.
3.5. Evaluation and dismissal of graduate students

Committee. A student who loses financial support in the form of a Teaching Assistantship may still be eligible for support in the form of a Research Assistantship, typically from his or her advisor. A student may also enlist the aid of the Graduate Student Advisory Committee (GSAC) to help in the process, see Subsection 3.1.4.

If a student is dismissed from the program in the middle of the academic year, the student is usually allowed to complete that academic year. In the case that the student is in the Ph.D. program, the student is usually allowed to obtain a Master’s degree, if the program requirements have been met.

If a student is not satisfied with a decision made after an appeal to the Graduate Committee, the student may appeal to the decision to the Department Chair, and further as specified in Policy 6-400 of the of the Student Code.

3.5.3 Guidelines on the student/advisor relationship

A student or advisor may terminate the student/advisor relationship because of dissatisfaction. If a student wishes to terminate the student–advisor relationship, the student should notify the advisor, the Director of Graduate Studies, and the Graduate Program Coordinator. However, in most cases it is recommended that the student discuss the situation with the Director of Graduate Studies before making this decision. If a faculty advisor is dissatisfied with the research effort of a student, the faculty advisor should make every effort to communicate the concerns he or she may have at an early stage of the dissatisfaction. If deficiencies persist, the faculty member should identify to the student in writing the unsatisfactory aspects of the student’s research performance and allow the student a reasonable time (typically at least 30 days) to correct the deficiencies. A copy of this letter should be sent to the Graduate Committee. If the deficiencies are corrected, the faculty advisor should notify the student in writing again with a copy of the letter sent to the Graduate Committee. If the deficiencies still persist, the student should expect that the student/advisor relationship is terminated. This may also lead to termination of financial support or termination from the program if the student is unable to find a new academic advisor.

3.5.4 Teaching Assistant performance

University Policy 6-309 regulates the procedure of hiring and firing of Teaching Assistants, among other academic staff, in cases of neglect of duties. The Course Coordinator and the Associate Chair are supervisors of Teaching Assistants as employees of the University. They periodically evaluate Teaching Assistants’ job performance, notify them of any deficiencies, and monitor improvement in job fulfillment. The Graduate Committee decides continuation of Teaching Assistantships, or termination from the program, based on reported teaching performances. Notifications of renewals or nonrenewals are distributed by April 15. Appeals of termination decisions must be made first in writing to the Graduate Committee. Further appeals may be made as specified in University Policy 6-309.
3.6 Combining Master’s and Ph.D. programs

There are two ways to combine the Ph.D. program and the various Master’s programs available.

3.6.1 Continuing to the Ph.D. program from the Master’s program

Master’s students who wish to apply to the Ph.D. program in Mathematics must fill out an application form available from the Graduate Program Coordinator and do not need to reapply through Apply Yourself (AY) to the Graduate School. Applicants to the Ph.D. Program must arrange three letters of recommendation to support their applications. Acceptance and financial support for the Ph.D. program is awarded on the basis of a review of the application materials submitted, in a single competition among all applicants, irrespective of whether their previous degrees come from the University of Utah or other institutions.

3.6.2 Earning a Master’s degree while in the Ph.D. program

Students who have directly entered the Ph.D. Program can frequently earn a Master’s degree along the way. See the Graduate Program Coordinator to arrange that required paperwork be sent to the Graduate School from the Department.

Course credits for the Master’s degree and the Ph.D. degree cannot be double-counted. The coursework allotted for the Master’s degree is reported in the student’s Program of Study for the Master’s Degree Form. Students should list the minimum number of course credits (30), in their M.S. programs of study forms. The course requirements for the Ph.D. must be satisfied by the remaining courses.

The student is responsible to make sure that tuition benefits cover the total semester hours needed for both the required Master’s and Ph.D. coursework.

3.7 Timelines for normal academic progress

This section supplies brief timelines for normal academic progress for students in the Ph.D. and regular Master’s programs.

3.7.1 Masters of Arts and Master of Science degrees

Financial support for the Master’s program is limited to two years.

- **Year 1**
 - Meet with the Director of Graduate Studies to form a plan upon entering the program.
 - Find an advisor and form a three-person Supervisory Committee. It is the responsibility of the student to suggest a committee to the Graduate Advisor, who is the Committee Chair.
3.7. Timelines for normal academic progress

- Discuss with your advisor your chosen area of study and Master’s degree project if applicable.

Year 2 — Fall

- Make the final plan for your course work, submit your Program of Study through the Graduate Program Coordinator and have it approved by your entire Committee.
- Talk with members of your Committee about plans for your comprehensive examination.

Year 2 — Spring

- File the Request for Supervisory Committee and Application for Admission to Candidacy for a Master's Degree forms for the Graduate School with the Mathematics Graduate Program Coordinator.
- Schedule any final oral exams or thesis defenses. Students writing theses must pay particularly close attention to the deadlines available at http://gradschool.utah.edu/thesis/

3.7.2 Ph.D. degree

Below is a recommended timeline for students attempting to complete the Ph.D. degree. Financial support for the Ph.D. program is limited to 4 or 5 years depending on the background of the applicant. In some cases this can be extended to 6 years, and, in extremely unusual cases, to 7 years.

Year 1

- Take 2–3 qualifying exam courses.
- Pass 2+ written qualifying exams by the August before your second year.
- Think about choosing your advisor.

Year 2

- Choose your advisor!
- Form your Supervisory Committee.
- Pass remaining written qualifying exams by the August before your third year.
- Take more advanced classes.
- Start thinking about, and perhaps even pass, your oral qualifying exam.
- Start working on/towards research.

Year 3

- Continue to work on research.
- Form your Supervisory Committee if not already done.
- Pass your oral qualifying exam if doing a coursework oral exam.
- Try to pass your oral qualifying exam if doing a research-based exam.

• **Year 4**
 - Continue to work on research.
 - Pass your oral qualifying exam if not already done (optimally, during the Fall Semester).
 - Discuss with your advisor plans to graduate next year.

• **Year 5**
 - Continue to work on research.
 - During the Fall Semester, apply to graduate with the Graduate Program Coordinator.
 - Apply for jobs in the Fall Semester (if appropriate).
 - Start writing your thesis in the Fall Semester.
 - Schedule your thesis defense in the first two months of Spring Semester.
 - Submit all your thesis material to the Thesis Office well in advance of *their* deadlines.

3.8 Outside employment

Graduate students supported by a TA, RA, or fellowship are expected to work full time on their duties and towards the completion of their degree. Supported students are not permitted to be employed while also working as a TA, RA, or under fellowship, unless prior approval is first obtained from the Graduate Committee.

3.9 Gaining other skills

All graduate students who have not had an appropriate course in computer programming are strongly encouraged to consult faculty about suitable classes in programming early in their programs. Familiarity with one or more computer-algebra systems, and the \TeX{} and \LaTeX{} typesetting systems, is expected of *all* graduating mathematicians, and many employers in engineering, mathematics, and science require job candidates to have good programming skills in numerical languages, such as C, C++, C#, Fortran, or Java. Graduates in statistics must have additional expertise in statistical software systems. Departmental computing staff are always happy to offer advice, guidance, and help in developing computer-programming experience.
3.10 Applying to graduate study

3.9.1 Courses from other departments

In general, 5000-, respectively 6000-, level courses from other departments (e.g., courses in Biology, Chemistry, Computer Science, Economics, Physics & Astronomy, etc.) can be applied to fulfill the course requirements for the Master’s, respectively Ph.D., program in Mathematics. Permission to include such courses must be obtained from the student’s Committee. Some of these courses may charge differential tuition.

3.10 Applying to graduate study

Instructions for applying to graduate study in the Mathematics Department at the University of Utah, including information about GRE and TOEFL SCORES, are available at

http://www.math.utah.edu/grad/GradApplicInst1.html

3.11 Housing in Salt Lake City

The University accepts applications for on-campus residence hall and University student apartment housing.

Student residence halls provide a single room, with a shared bathroom and kitchen. Visit http://www.housing.utah.edu/ for current information, or contact Office of Housing and Residential Living, 5 Heritage Center, University of Utah, Salt Lake City, UT 84112-2036, (801) 587-2002.

Apartment housing for both married and single undergraduate and graduate students is available on campus. Visit http://www.apartments.utah.edu/ for current information, or contact University Student Apartments, 1945 Sunnyside Avenue, Salt Lake City, UT 84108, (801) 581-8667.

Off-campus house and apartment listings can be found in the classified section of The Salt Lake Tribune (http://www.sltrib.com/), the Deseret News (http://www.desnews.com/), the student newspaper, The Daily Utah Chronicle (http://www.dailyutahchronicle.com/), and also on radio and television station KSL (http://www.ksl.com/).

Last revision: September 10, 2016, 18:08 MDT
3. Graduate study
4 Degree requirements

This chapter lists the degree requirements for the Ph.D. degree, as well as the various Master’s degrees offered.

4.1 Master of Arts and Master of Science degrees

4.1.1 Graduate School requirements

The Master of Arts degree requires standard proficiency in one foreign language — French, German, or Russian. The Master of Science degree does not have a language requirement. Otherwise, the degree requirements for the M.S. and M.A. degrees are identical. Visit http://gradschool.utah.edu/graduate-catalog/degree-requirements for information on the Ph.D. degree requirements.

A number of forms must be filed, and certain time limitations are to be observed. The student is responsible for submitting forms on time.

Each Master’s candidate is assigned an Academic Advisor upon entering the program. This advisor has the primary responsibility of guiding and evaluating the candidate’s progress through the Master’s program: see Subsection 3.3.2 for more information. During the first year, the Master’s candidate also forms a Supervisory Committee which assists with the same task: see Section 3.3.

A student can receive a Master’s degree in either pure or applied mathematics.

4.1.2 Departmental requirements — pure mathematics

Requisites for the Master's degree in pure mathematics are listed in the following subsections.

4.1.2.1 Course requirements — pure mathematics

All coursework must be at the Master’s level, courses numbered 5000 or above.

- Math 5210 (real analysis).
- Math 5310, 5320 (algebra).
4. Degree requirements

- One 6000-level sequence consisting of two one-semester courses.
- Four additional one-semester courses at the 5000- or 6000-level.
- Thesis candidates must register for a minimum of six credit hours of thesis research (Math 6970), and at least one credit hour per semester, from the time of formal admission to the Graduate Program, until all requirements for the degree, including the final oral examination (thesis defense), are completed.

4.1.2.2 Graduation requirements — pure mathematics

There are four options to satisfy the graduation requirements for the Master’s degree. The particular option utilized is decided by the student’s Supervisory Committee.

1. Qualifying Exam Option. Pass two of the written qualifying exams and take at least 30 semester hours of approved courses. The exams are comprehensive and serve as the required final exam. See Section 3.4 for more details on those exams.
 OR

2. Curriculum Project Option. Write a Curriculum Project and take at least 39 semester hours of approved courses. Students choosing the Non-Thesis Curriculum Project Option may take up to 10 semester hours of Math 6960 Special Projects. The Curriculum Project is in every other way a Thesis but does not need approval from the Thesis Office. The required final examination for this option is the public oral Final Defense of the Project.
 OR

3. Courses Project Option. Take additional courses at the 6000- or 7000-level for a total of at least 39 semester hours of approved courses. The required final examination for this option is the oral Final Comprehensive Examination.
 OR

4. Thesis Project Option. Write a Master’s Thesis and take at least 39 semester hours of approved courses. Students choosing this Thesis Option may take up to 10 semester hours of Math 6970, Master’s Thesis Preparation. The required final examination for this option is the public oral Final Defense of the Thesis. The University Graduate School’s Thesis Office must approve the thesis and a copy of the thesis is archived by the University Library. By arrangement with the Graduate School, students writing Master’s theses may use credit hours in courses, numbered 6000 or above and in the general area of specialization of the thesis, to fulfill the 6–10 hours requirement of 6970 (Thesis Research).

The total number of semester hours required for the Master’s degree in mathematics should fall in the range 30–39.

As specified by requirements of the Graduate School, a description of a nonthesis option, and the basis for its selection, shall be included with the student’s proposed
4.2 Master of Statistics (Mathematics) program

program. The statement, and the proposed program of study, must then have the
approval of the departmental Director of Graduate Studies and be submitted to the
Graduate Dean with the proposed program of study.

4.1.3 Departmental requirements — applied mathematics

Requisites for the Master’s degree in applied mathematics are given in the following
subsections.

4.1.3.1 Course requirements — applied mathematics

All coursework must be at the Master’s level, courses numbered 5000 or above.

- Either two 6000-level sequences, or 5210 and three 6000-level one-semester
courses, two of which must form a year-long sequence.
- Five additional one-semester courses at the 5000- or 6000-level.

4.1.3.2 Graduation requirements — applied mathematics

Same as those for the M.S. in pure mathematics.

4.1.4 Time limit

A period of four years is allowed to complete degree requirements for a Master’s
degree. Extensions beyond this four-year limit must be recommended by the Supervisory Committee and approved by the Dean of the Graduate School. The same
time limit applies to M.S. and M.A. degrees. Supported students are entitled to
tuition waivers for a total of two years or four semesters for Master’s degrees.

4.1.5 Transfer credit

Upon the approval of the Master’s Committee, at most nine hours of nonmatricu-
lated credit from the University of Utah, or six hours of transfer credit from another
university, are allowed in the graduate program toward a Master’s degree.

4.2 Master of Statistics (Mathematics) program

An applicant selects Master of Statistics — Mathematics (MST) in the Graduate
School application. A student is admitted to the program by the Departmental
Statistics Committee and the Departmental Admissions Committee. The degree,
Master of Statistics (Mathematics), is awarded by the Mathematics Department.

Last revision: September 10, 2016, 18:08 MDT
4. Degree requirements

4.2.1 Prerequisites

- Either a Bachelor’s degree in Mathematics, or the equivalent, e.g., two years of Calculus and two senior level mathematics sequences.\(^1\)

- Math 3070, 3080, 3090, or equivalent.

4.2.2 Course requirements

The Master of Statistics (Mathematics) degree requires 36 credits of graduate level coursework, numbered 5000 or higher.

- Math 5010, 5080, 5090.\(^2\)

- Math 6010, 6020.

- Math 6070.

- Electives approved by the Supervisory Committee, 15 credits.

- Math 6960 (Master’s project), 3–6 hours.

- Oral examination on the Curriculum Project (Math 6960); this is a “Curriculum Project Defense.”

For more information on the MSTAT program, see the Mathematics Information Sheet available at

http://mstat.utah.edu/degree-options/mathematics.php

4.3 Master of Science in Mathematics Teaching

For information about the Master of Science in Mathematics Teaching, see the prerequisites and requirements at

http://www.math.utah.edu/mathed/master_mt.html

Students may also contact Natasha Carlton (mailto:carlton@math.utah.edu) for administrative information, and Herb Clemens (mailto:clemens@math.utah.edu) for academic program information.

\(^1\) A “sequence” refers to a course that continues through an academic year.

\(^2\) If Math 5010, 5080, 5090 were taken while the student was an undergraduate, they must be replaced by three courses approved by the Committee or the Director of Graduate Studies.
4.4 Master of Science in Computational Engineering and Science

The University of Utah Department of Mathematics and the School of Computing have established a joint degree program in Computational Engineering and Science (CES). In 2016–2017, the Mathematics members of the CES Coordinating Committee are Alexander Balk and Peter Alfeld. The CES program is at

http://www.ces.utah.edu/

To apply for admission into the CES program, a student should follow the instructions at

http://www.ces.utah.edu/admissions.html

The requirements for the CES M.S. degree are posted at

http://www.ces.utah.edu/student_resources.html

They include tracks with thesis, with courses, and with a project.

4.5 Professional Master of Science and Technology, Computational and Data Science Track

The mission of the Computational and Data Science Track of the PMST program is to prepare students for professional positions in business, industry, and government, because demand for computational and data-science specialists is rapidly increasing with the growth of large sets of data. For many businesses and industries, developing mathematical models, employing numerical methods, and using data visualization has become increasingly important for innovative scientific research.

The Computational and Data Science Track incorporates graduate coursework from different mathematical and computer-science disciplines to reflect the breadth of computational and mathematical tools employed to solve real-world problems.

The Computational and Data Science Track of the PMST Program is a professional interdisciplinary program that, together with graduate courses in mathematics and computing, includes courses in management and communication.

PMST students are required to complete an internship with a company, organization, or governmental agency. The business component serves to develop leadership and management skills that are highly valued by industry, and helps to prepare students for a career and professional development.

For more information, visit the PMST and CDS websites at

http://pmst.utah.edu
http://pmst.utah.edu/computational-and-data-science-track/

Last revision: September 10, 2016, 18:08 MDT
More details about the program, and examples of curricula within specific concentration areas, can be found at

Students with a background in mathematics, physics, computer science, or engineering are encouraged to apply.

4.6 Doctor of Philosophy degree

4.6.1 Graduate School requirements

Visit

http://gradschool.utah.edu/graduate-catalog/degree-requirements

for information on the Ph.D. degree requirements.

4.6.2 Departmental requirements

4.6.2.1 Advisors and Supervisory Committee

An Initial Academic Mentor is appointed for each prospective student prior to the first semester of graduate study.

During the first two years in the program, the student must select an advisor and form a Supervisory Committee. See Section 3.3 for more details on the composition and function of this committee.

4.6.2.2 Course requirements

• Course requirements for the Ph.D. degree consist of at least seven sequences numbered 6000 or above, or their equivalent, approved by the student's Supervisory Committee. The seven sequences required must include at least 14 credit hours of courses numbered 7800–7970 (topics courses, seminars, thesis research). The graduate student's Supervisory Committee, if it deems it appropriate, may require additional courses and/or require specific courses.

• Exceptions to the above regulations must be approved on an individual basis by the Graduate Committee upon recommendation by the student's Supervisory Committee.

4.6.2.3 Written preliminary examinations

The Written Ph.D. Preliminary Examinations are the same as the Master's Qualifying Examinations from Option #1. Ph.D. students must pass three tests from the eight specified areas by January of their third year. See Section 3.4 for more details on these exams.
4.6. Doctor of Philosophy degree

4.6.2.4 Oral qualifying examination

Ph.D. students are required to take an oral qualifying examination. See Subsection 3.4.2 for more details.

4.6.2.5 Foreign language requirements

The Department of Mathematics does not have foreign language requirements for a Ph.D. degree.

4.6.2.6 Final oral examination

Ph.D. students must perform a final oral examination, sometimes called a “Thesis Defense”. See Subsection 3.4.3.

4.6.2.7 Teaching requirements of Ph.D. candidate

The Department requires each graduate student who is studying toward a Ph.D. degree to teach a minimum of two courses, or equivalent tutorials, or laboratory supervisions to be carried out over a minimum of one year and a maximum of six years, whenever appropriate.

4.6.3 Time limit

The time limit for completion of degree requirements for the Ph.D. degree, as set by the Department, is seven years. The Graduate School limits the maximum number of years for which tuition waivers are granted to supported students. Currently, this is five years with a Bachelor’s degree, or four years with a Master’s degree. Entrants with a Bachelor’s degree who have taught in our graduate program for four semesters (two years) can request another year of waiver. See Subsection 3.2.1 for more details.

4.6.4 Graduate School schedule of procedures for the Ph.D. degree

The Graduate School has prepared the Graduation Overview for Doctoral Candidates for students pursuing a graduate degree, available at

http://gradschool.utah.edu/current_students/graduation-overview-for-doctoral-candidates

Thesis information may be found at

http://gradschool.utah.edu/thesis/

A Handbook for Theses and Dissertations is available at

http://gradschool.utah.edu/thesis/handbook/

Last revision: September 10, 2016, 18:08 MDT
4. Degree requirements
5 Syllabi for qualifying examinations

This chapter discusses the material that is expected to be mastered for the qualifying examinations that all graduate students must pass before completing their research programs.

5.1 Algebra

5.1.1 Topics: Math 6310, Modern Algebra I

- **Group theory**: subgroups, normal subgroups, quotient groups, homomorphisms, isomorphism theorems, groups acting on sets, orbits, stabilizers, orbit decomposition formula, Lagrange’s Theorem, Cayley’s Theorem, Sylow Theorems, permutation groups, symmetric and alternating groups, simple groups, classification of groups of small order, simplicity of the alternating group on at least 5 letters, direct products and semi-direct products of groups, exact and split exact sequences, commutator subgroups, solvable groups, nilpotent groups, solvability of p-groups, classical matrix groups, automorphism groups, Jordan–Holder theorem, free groups, presentations of groups.

- **Module theory**: free modules, submodules, quotient modules, tensor symmetric and exterior products of modules, projective and injective modules, exact sequences, complexes, homology, connecting homomorphisms, Tor and Ext functors.

- **Rings**: ideals, quotient rings, groups rings, matrix rings, division rings, commutative rings, prime and maximal ideals, group of units, principal ideal domains, unique factorization domains, structure theorem for modules over a principal ideal domain and its applications to abelian groups and to linear algebra, rational and Jordan forms, eigenvectors, eigenvalues, minimal and characteristic polynomials, Cayley–Hamilton Theorem.

5.1.2 Topics: Math 6320, Modern Algebra II

- **Fields**: finite and algebraic extensions, degrees, roots, straight edge and compass constructions, splitting fields, algebraic closure, finite fields, derivatives
of polynomials and multiple roots, separable and normal extensions, primitive elements, Galois groups, fundamental theorem of Galois theory, solvability by radicals, cyclotomic polynomials, constructible regular polygons, transcendental extensions.

- **Rings revisited**: polynomial rings, Gauss’ Lemma, Eisenstein’s criterion, localization and field of fractions, noetherian rings, Hilbert’s Basis Theorem, integral extensions, algebraic sets, Hilbert’s Nullstellensatz.

- **Optional topics**: There is typically time remaining to cover a number of topics such as the following; however, since this is at the discretion of the Instructor, the qualifying exam should avoid questions based on these.

 - bilinear forms, quadratic forms and signature, symmetric bilinear forms, alternate forms, orthogonal geometry, Witt’s Cancellation theorem,

 - semisimple rings, finite-dimensional algebras, Jacobson radical, Jacobson Density Theorem, Artin–Wedderburn Theorem,

 - graded rings, Hilbert functions, Krull dimension,

 - representations of finite groups, complete reducibility, Maschke’s theorem, characters, orthogonality relations, character tables, representations of S_n.

5.1.3 Texts

5.2 Applied mathematics

5.2.1 Topics

- Introduction to function spaces: metric spaces: convergence, completeness; continuity of functions; separability; contraction mapping principle; vector spaces; Banach spaces; compactness; L^p spaces (without measure theory).
• Linear operators: linear operators; bounded linear operators; linear functionals; dual spaces; compact operators; mention Hahn–Banach Theorem and consequences; weak and weak* convergence; reflexive spaces; Fredholm alternative.

• Hilbert spaces: Inner product spaces; orthogonal projections; orthonormal sets; linear functionals and bilinear forms; Riesz representation theorem; Lax–Milgram theorem; adjoint operators; Fredholm alternative in Hilbert spaces.

• Spectral theory: resolvent and spectrum; basic results for bounded linear operators; spectral properties of compact operators; bounded self-adjoint operators; spectral theorem for compact self-adjoint operators; more general spectral representations.

• Distributions: spaces of test functions; definition of distributions; operations on distributions; Fourier transform and tempered distributions.

• Complex Variable Methods: Analytic function theory, integral theorems, conformal mappings, contour integration, special functions, transform pairs, scattering theory.

• Asymptotic Expansions: Laplace’s method, Watson’s lemma, methods of steepest descent and stationary phase.

5.2.2 Texts

5.3 Differential equations

5.3.1 Ordinary and partial differential equations

5.3.1.1 ODE topics

• Initial value problems: Fixed-point theorems; Basic existence and uniqueness; Dependence on initial conditions.

• Linear equations: The matrix exponential; Linear autonomous systems; General linear systems; Periodic linear systems and Floquet theory.
• **Boundary value problems**: Sturm–Liouville problems; Compact symmetric operators; Green’s functions; Integral equations; Rayleigh–Ritz method.

• **Dynamical systems theory**: Flows, orbits and invariant sets; Definitions of stability; Planar dynamics and Poincaré–Bendixson; Hamiltonian mechanics; Stable and unstable manifolds; Hartman–Grobman theorem; Method of averaging.

• **Perturbation methods**: Regular perturbation theory, nonlinear oscillations; Poincaré–Linstedt; Singular perturbation theory, method of multiple scales; Boundary layers; WKB methods.

5.3.1.2 ODE texts

5.3.2 Partial differential equations

5.3.2.1 PDE topics

• **Scalar conservation laws and first-order equations**: Linear transport equation and conservation laws; Traffic dynamics; Weak solutions and shock waves; Method of characteristics for quasilinear equations; General first-order equations.

• **Waves and vibrations**: General concepts, e.g., types of waves, group velocity, dispersion relations; One-dimensional wave equation, waves on a string; The D’Alembert formula and characteristics; Classification of second-order linear equations; Multi-dimensional wave equation, the Cauchy problem.

• **Diffusion**: The one-dimensional diffusion equation; Uniqueness: integral methods and maximum principles; Fundamental solution and the global Cauchy problem; Random walks; Global Cauchy problem, maximum principles; Some nonlinear problems: traveling waves.

• **The Laplace equation**: Harmonic functions, mean value theorems, maximum principles; Fundamental solution and the global Cauchy problem; Green’s functions; Potential theory.

• **Variational formulation of elliptic problems**: Linear operators and duality; Lax–Milgram theorem and minimization of bilinear forms; Galerkin method; Variational formulation of Poisson’s equation in 1D; Variational formulation of Poisson’s equation in higher dimensions.
5.4. Geometry and topology

5.3.2.2 PDE texts

5.4 Geometry and topology

5.4.1 Geometry and topology topics

- Definition of a manifold via charts, submanifolds.
- Inverse function theorem (recalled from real analysis), immersions, submersions, (local) diffeomorphisms, local immersion and submersion theorems, regular values and transversality, preimage theorem, basic examples of manifolds: \mathbb{R}^n, S^n, T^n, \mathbb{RP}^n, \mathbb{CP}^n, Stiefel manifolds, Grassmannians, the notion of Lie groups and basic examples, e.g., $\text{GL}_n(\mathbb{R})$, $\text{SL}_n(\mathbb{R})$, $\text{SO}(n)$, $\text{SL}_n(\mathbb{C})$, $\text{SO}(p,q)$, etc.
- Tangent space, vector bundles, tangent and normal bundle, stability of immersions, submersions, etc.
- Partitions of unity and applications: approximating continuous maps by smooth maps, existence of a Riemannian metric.
- Sard’s theorem (proof not required), transversality theorem, Morse functions (existence, stability).
- Manifolds with boundary, classification of 1-manifolds (e.g., using Morse functions), Brouwer’s fixed point theorem (also for continuous maps using approximations).
- Normal bundle, tubular neighborhood theorem, Whitney embedding theorem.
- Intersection theory mod_2, Jordan–Brouwer.
- Orientations, \mathbb{RP}^n orientable iff n odd, intersection theory, winding number, degree (e.g., degree and fixed points on spheres), Lefschetz fixed point theorem, vector fields, Poincaré–Hopf, Euler characteristic.
- Differential forms, exterior derivative, pullbacks, closed and exact forms, wedge product, integration, Stokes, Poincaré lemma, de Rham cohomology, degree formula, Gauss–Bonnet.
- Integral curves, flow, Lie bracket, Lie derivative, Lie algebra of a Lie group, exponential map on a Lie algebra (compute basic examples), foliations, examples of nonintegrable plane fields, Frobenius theorem and applications to Lie groups.

Last revision: September 10, 2016, 18:08 MDT
5.4.2 Geometry and topology texts

5.4.3 Algebraic topology topics

Chapters and page numbers refer to Hatcher’s book.

- Ch 0: Basic notions of homotopy, deformation retraction, adjunction spaces, cell complexes (see also appendix), cell complex structures on standard spaces: S^n, CP^n, RP^n, T^n, graphs, surfaces. $SL_n(R)$ deformation retracts to $SO(n)$.
- Ch 1: Free products of groups and amalgams, fundamental group, van Kampen, computing 1 of cell complexes and standard spaces, covering spaces, lifting properties, deck group, Galois correspondence, free properly discontinuous actions, Lie groups have abelian 1, covering space of a Lie group is a Lie group, $SO(2) = S^1$, $SO(3) = RP^3$, $SL_2(R)$.
- Ch 2: and simplicial complexes, simplicial homology, singular homology, basic properties (homotopy invariance, long exact sequences, Mayer–Vietoris, excision), degree via homology, computation of homology for cell complexes, homology with coefficients, Euler characteristic, Brower’s fixed point theorem, invariance of domain, $H − 1 = 1ab$.
- Ch 3: Cohomology, universal coefficient theorem, cup and cap products, cohomology ring, computation for standard spaces, use to prove Borsuk–Ulam and e.g., to see that S_2, S_4 and CP are not homotopy equivalent, orientability, fundamental class and Poincaré duality statement. Lefschetz and Alexander duality.
- (p. 218–221) Method for showing two homology theories are equivalent. Illustrate on a subset of the following:
 - equivalence of singular and simplicial homology (p. 128–130);
 - de Rham theorem (this is in Lee’s book);
 - Künneth formula (p. 218–221);
 - Poincaré duality in de Rham cohomology, i.e., $H_i(M)H_{c-n} − i(M)R$ induced by M is nondegenerate, say for M with finite good cover (see Spivak, Ch 11).

Last revision: September 10, 2016, 18:08 MDT
5.4.4 Algebraic topology texts

5.5 Numerical analysis

5.5.1 Topics

- **Numerical linear algebra**: Direct and iterative methods for linear system of equations; Error analysis; Methods for finding eigenvalues and eigenvectors; LU, QR, Cholesky, Singular value decomposition; Least squares.

- **Interpolation and approximation**: Polynomial, rational, Fourier series; Spline-based methods for interpolation and approximation; Quadrature; Orthogonal polynomials.

- **Solution of nonlinear equations and optimization**: Contraction mapping principle; Newton’s method, Quasi-Newton methods; Conjugate gradient method, Steepest descent method; Linear programming; Constrained optimization.

- **Numerical solutions of differential equations**: Runge–Kutta methods, Linear multi-step methods for initial value problems; Shooting methods for boundary value problems; Finite differences and finite elements for boundary value problems; Finite difference and finite element methods for simple PDEs.

5.5.2 Texts

5.6 Probability

5.6.1 Topics

• Probability spaces, expectation, independence, Borel–Cantelli lemmas, Strong Law of Large Numbers.

• Weak convergence, characteristic functions, Central Limit Theorem.

• Conditional expectation, martingale convergence theorem, uniform integrability, optional stopping theorem.

• Countable Markov chains, recurrence, transience, stationarity, ergodicity.

• Brownian motion, sample path properties, Donsker’s theorem.

5.6.2 Texts

Last revision: September 10, 2016, 18:08 MDT
5.7 Real and complex analysis

5.7.1 Topics

5.7.2 Texts

Last revision: September 10, 2016, 18:08 MDT
5.8 Statistics

5.8.1 Texts

This chapter records our doctoral students of the past three decades to show their fields of study, graduate advisors, and the initial job positions that they moved to after graduation.

<table>
<thead>
<tr>
<th>Ph.D. Graduate</th>
<th>Research Area</th>
<th>Advisor</th>
<th>Post-graduate position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Jason Albright</td>
<td>Applied Mathematics</td>
<td>Epshteyn</td>
<td>Los Alamos National Laboratory, NM</td>
</tr>
<tr>
<td>Vira Babenko</td>
<td>Applied Mathematics</td>
<td>Alfeld</td>
<td>Ithaca College, Ithaca, NY</td>
</tr>
<tr>
<td>Patrick Bardsley</td>
<td>Applied Mathematics</td>
<td>Epshteyn & Guevara-Vasquez</td>
<td>University of Texas/Austin</td>
</tr>
<tr>
<td>Andrew Basinski</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td></td>
</tr>
<tr>
<td>Pavel Bezdek</td>
<td>Probability</td>
<td>Khoshnevisan</td>
<td>Wolverine Trading LLC, Chicago, IL</td>
</tr>
<tr>
<td>Morgan Cesa</td>
<td>Geometric Group Theory</td>
<td>Wortman</td>
<td>Data analyst</td>
</tr>
<tr>
<td>Parker Childs</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Biofire Diagnostics, Salt Lake City, UT</td>
</tr>
<tr>
<td>Paul Andrew Egbert</td>
<td>Algebraic Geometry</td>
<td>Hacon</td>
<td>mootipass.com</td>
</tr>
<tr>
<td>Drew Johnson</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>University of Oregon, Eugene, OR</td>
</tr>
<tr>
<td>Brent Kerby</td>
<td>Statistics</td>
<td>Horváth</td>
<td></td>
</tr>
<tr>
<td>Tony Lam</td>
<td>Probability</td>
<td>Rassoul-Agha</td>
<td></td>
</tr>
<tr>
<td>Haydee Lindo</td>
<td>Commutative Algebra</td>
<td>Iyengar</td>
<td>William’s College, Williamstown, MA</td>
</tr>
</tbody>
</table>
6. Recent Ph.D. students

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Supervisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alan Marc Watson</td>
<td>Algebraic Geometry</td>
<td>Hacon</td>
<td>TransAmerica</td>
</tr>
<tr>
<td>Cheryl Zapata</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>TransAmerica</td>
</tr>
</tbody>
</table>

2015

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Supervisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omprokash Das</td>
<td>Algebraic Geometry</td>
<td>Hacon</td>
<td>Tata Institute of Fundamental Research, Mumbai, India</td>
</tr>
<tr>
<td>Megan Gorringe Dixon</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>University of Utah</td>
</tr>
<tr>
<td>Kenneth (Jack) Jeffries</td>
<td>Commutative Algebra</td>
<td>Singh</td>
<td>University of Michigan, Ann Arbor, MI</td>
</tr>
<tr>
<td>Predrag Krtolica</td>
<td>Applied Mathematics</td>
<td>A. Cherkaev & Treibergs</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td>Cristian Martinez</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>University of California/Santa Barbara, CA</td>
</tr>
<tr>
<td>Greg Rice</td>
<td>Statistics</td>
<td>Horváth</td>
<td>University of Waterloo, Waterloo, ON, Canada</td>
</tr>
<tr>
<td>Jia Wang</td>
<td>Statistics</td>
<td>Horváth</td>
<td>Goldman Sachs</td>
</tr>
<tr>
<td>Yohsuke Watanabe</td>
<td>Topology</td>
<td>Bromberg</td>
<td>University of Hawaii at Manoa, Honolulu, HI</td>
</tr>
</tbody>
</table>

2014

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Supervisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kei Yuen Chan</td>
<td>Representation Theory</td>
<td>Trapa</td>
<td>University of Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Chih-Chieh Chen</td>
<td>K Theory</td>
<td>Savin</td>
<td>Midwestern State University, Wichita Falls, TX</td>
</tr>
<tr>
<td>Sarah Cobb</td>
<td>Geometric Group Theory</td>
<td>Wortman</td>
<td>Midwestern State University, Wichita Falls, TX</td>
</tr>
<tr>
<td>Veronika Ertl</td>
<td>Algebraic Geometry</td>
<td>Nizioł</td>
<td>Universität Regensburg, Germany</td>
</tr>
<tr>
<td>Brendan Kelly</td>
<td>Geometric Group Theory</td>
<td>Wortman</td>
<td>Harvard University, Cambridge, MA</td>
</tr>
<tr>
<td>Michał Kordy</td>
<td>Applied Mathematics</td>
<td>E. Cherkaev</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonya Leibman</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>Online Image, Murray, UT</td>
</tr>
<tr>
<td>Ross Magi</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Walla Walla University, College Place, WA</td>
</tr>
<tr>
<td>Brian Mann</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>Amazon</td>
</tr>
<tr>
<td>James Moore</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>Georgia Tech, Atlanta, GA</td>
</tr>
<tr>
<td>Feng Qu</td>
<td>Algebraic Geometry</td>
<td>Lee</td>
<td>Max-Planck-Institute für Mathematik, Bonn, Germany</td>
</tr>
<tr>
<td>Andrew Thaler</td>
<td>Applied Mathematics</td>
<td>Milton</td>
<td>The Institute for Mathematics and Its Applications (IMA), St. Paul, MN</td>
</tr>
<tr>
<td>Yuchen Zhang</td>
<td>Algebraic Geometry</td>
<td>Hacon</td>
<td>University of Michigan, Ann Arbor, MI</td>
</tr>
<tr>
<td>Dylan Zwick</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>Overstock, Midvale, UT</td>
</tr>
</tbody>
</table>

2013

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoffrey Hunter</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Ontario Institute for Cancer Research, Toronto, ON, Canada</td>
</tr>
<tr>
<td>Xiaodong Jiang</td>
<td>Algebraic Geometry</td>
<td>Hacon</td>
<td>Myriad Genetics, Salt Lake City, UT</td>
</tr>
<tr>
<td>Aaron Wood</td>
<td>Representation Theory</td>
<td>Savin</td>
<td>University of Missouri, Columbia, MO</td>
</tr>
</tbody>
</table>

2012

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brittany Bannish</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>University of Central Oklahoma, Edmond, OK</td>
</tr>
<tr>
<td>Davide Fusi</td>
<td>Algebraic Geometry</td>
<td>de Fernex</td>
<td>The Ohio State University, Columbus, OH</td>
</tr>
<tr>
<td>Erica Graham</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>University of North Carolina, Chapel Hill, NC</td>
</tr>
</tbody>
</table>
6. Recent Ph.D. students

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam Gully</td>
<td>Applied Mathematics</td>
<td>Golden</td>
<td>McMaster University</td>
<td>Hamilton, ON, Canada</td>
</tr>
<tr>
<td>Brian Knaeble</td>
<td>Statistics Education</td>
<td>Horváth</td>
<td>University of Wisconsin-Stout</td>
<td>Menomonie, WI</td>
</tr>
<tr>
<td>Christopher Kocs</td>
<td>Representation Theory</td>
<td>Savin</td>
<td>DOD Hill Air Force Base</td>
<td>Ogden, UT</td>
</tr>
<tr>
<td>Ching-Jui (Ray) Lai</td>
<td>Algebraic Geometry</td>
<td>Hacon & Lee</td>
<td>Purdue University, West Lafayette, IN</td>
<td></td>
</tr>
<tr>
<td>Erika Meucci</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>Paul H. Nitze School of Advanced International Studies, Bologna</td>
<td></td>
</tr>
<tr>
<td>Ben Murphy</td>
<td>Applied Mathematics</td>
<td>Golden</td>
<td>University of California/Irvine</td>
<td>CA</td>
</tr>
<tr>
<td>Ron Reeder</td>
<td>Statistics</td>
<td>Horváth</td>
<td>Watson Laboratories, Salt Lake City, UT</td>
<td></td>
</tr>
<tr>
<td>Christopher Remien</td>
<td>Mathematical Biology</td>
<td>Adler & Cerling</td>
<td>National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN</td>
<td></td>
</tr>
<tr>
<td>Anna Schoening</td>
<td>Probability</td>
<td>Rassoul-Agha</td>
<td>University of Utah, Salt Lake City, UT</td>
<td></td>
</tr>
<tr>
<td>Stefano Urbinati</td>
<td>Algebraic Geometry</td>
<td>Hacon</td>
<td>University of Warsaw, Poland</td>
<td></td>
</tr>
<tr>
<td>Liang Zhang</td>
<td>Probability</td>
<td>Khoshnevisan</td>
<td>Michigan State University, East Lansing, MI</td>
<td></td>
</tr>
<tr>
<td>Julian Chan</td>
<td>Commutative Algebra</td>
<td>Singh</td>
<td>Weber State University, Ogden, UT</td>
<td></td>
</tr>
<tr>
<td>Matthew Housley</td>
<td>Representation Theory</td>
<td>Trapa</td>
<td>Brigham Young University, Provo, UT</td>
<td></td>
</tr>
</tbody>
</table>

2011
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elisha Hughes</td>
<td>Statistics</td>
<td>Horváth</td>
<td>Myriad Genetics Inc., Salt Lake City, UT</td>
</tr>
<tr>
<td>Sean Laverty</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>Swarthmore College, PA</td>
</tr>
<tr>
<td>Loc Nguyen</td>
<td>Differential Equations</td>
<td>Schmitt</td>
<td>École Normale Supérieure, Paris, France</td>
</tr>
<tr>
<td>Blerta Shtylla</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Mount Holyoke College, Hadley, MA</td>
</tr>
<tr>
<td>Ben Trahan</td>
<td>Representation Theory</td>
<td>Trapa</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td>Yuan Zhang</td>
<td>Applied Mathematics</td>
<td>A. Cherkaev</td>
<td>Universidad de Castilla-La Mancha, Cuidad Real, Spain</td>
</tr>
<tr>
<td>Yael Algom-Kfir</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>Yale University, New Haven, CT</td>
</tr>
<tr>
<td>Courtney Davis</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>University of Maryland, College Park, MD</td>
</tr>
<tr>
<td>Trung Dinh</td>
<td>Commutative Algebra</td>
<td>Roberts</td>
<td>FPT University, Hanoi, Vietnam</td>
</tr>
<tr>
<td>Lindsay Erickson</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>Sandia National Labs, Livermore, CA</td>
</tr>
<tr>
<td>Giao Huynh</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>Oakland University, Oakland, CA</td>
</tr>
<tr>
<td>Casey Johnson</td>
<td>Representation Theory</td>
<td>Trapa</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>Karim Khader</td>
<td>Probability</td>
<td>Khoshneisan</td>
<td>Division of Epidemiology, University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td>Zachary Kilpatrick</td>
<td>Mathematical Biology</td>
<td>Bressloff</td>
<td>University of Pittsburgh, PA</td>
</tr>
<tr>
<td>Sarah Kitchen</td>
<td>Representation Theory</td>
<td>Miličić</td>
<td>Albert-Ludwigs Universität, Freiburg, Germany</td>
</tr>
<tr>
<td>Hwan Yong Lee</td>
<td>Applied Mathematics</td>
<td>Dobson</td>
<td>Drexel University, Philadelphia, PA</td>
</tr>
</tbody>
</table>

2010

Last revision: September 10, 2016, 18:08 MDT
6. Recent Ph.D. students

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karin Leiderman</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>Duke University, Durham, NC</td>
</tr>
<tr>
<td>Frank Lynch</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Occidental College, Los Angeles, CA</td>
</tr>
<tr>
<td>William Malone</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>C. H. Flowers High School, Springdale, MD</td>
</tr>
<tr>
<td>Jay Newby</td>
<td>Mathematical Biology</td>
<td>Bressloff</td>
<td>Oxford University, Oxford, UK</td>
</tr>
<tr>
<td>Michael Purcell</td>
<td>Probability</td>
<td>Khoshnevisan</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>Russell Richins</td>
<td>Applied Mathematics</td>
<td>Dobson</td>
<td>Michigan State University, East Lansing, MI</td>
</tr>
<tr>
<td>Shang-Yuan Shiu</td>
<td>Probability</td>
<td>Khoshnevisan</td>
<td>Academia Sinica, Taipei, Taiwan</td>
</tr>
<tr>
<td>Josh Thompson</td>
<td>Geometric Group Theory</td>
<td>Bromberg</td>
<td>Colorado State University, Fort Collins, CO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Student</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Tommaso Centelegh</td>
<td>Number Theory</td>
<td>Savin</td>
<td>Universität Duisburg-Essen, Essen, Germany</td>
</tr>
<tr>
<td></td>
<td>Scott Crofts</td>
<td>Representation Theory</td>
<td>Trapa</td>
<td>University of California, Santa Cruz, CA</td>
</tr>
<tr>
<td></td>
<td>Jason Preszler</td>
<td>Number Theory</td>
<td>Savin</td>
<td>University of Puget Sound, Tacoma, WA</td>
</tr>
<tr>
<td></td>
<td>Amber Smith</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>Los Alamos National Laboratory, NM</td>
</tr>
<tr>
<td></td>
<td>Nessy Tania</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>University of British Columbia, Vancouver, BC, Canada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Student</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Erin Chamberlain</td>
<td>Commutative Algebra</td>
<td>Roberts</td>
<td>Brigham Young University, Provo, UT</td>
</tr>
<tr>
<td></td>
<td>Elizabeth Doman Copene</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Idaho Technology Inc., Salt Lake City, UT</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Nesse</td>
<td>Mathematical Biology</td>
<td>Bressloff</td>
<td>University of Ottawa, Ottawa, ON, Canada</td>
</tr>
<tr>
<td>Gueorgui Todorov</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>Princeton University, Princeton, NJ</td>
</tr>
<tr>
<td>Berton Earnshaw</td>
<td>Mathematical Biology</td>
<td>Bressloff</td>
<td>University of Utah, and Michigan State University, East Lansing, MI</td>
</tr>
<tr>
<td>Domagoj Kovacevic</td>
<td>Number Theory</td>
<td>Savin</td>
<td></td>
</tr>
<tr>
<td>Lars Louder</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>University of Michigan, Ann Arbor, MI</td>
</tr>
<tr>
<td>Meagan McNulty</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>William & Mary College, Williamsburg, VA</td>
</tr>
<tr>
<td>Elijah Newren</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>Sandia National Laboratory, Albuquerque, NM</td>
</tr>
<tr>
<td>Qiang Song</td>
<td>Commutative Algebra</td>
<td>Singh</td>
<td>MISYS, Beijing, China</td>
</tr>
<tr>
<td>Dali Zhang</td>
<td>Inverse Problems</td>
<td>E. Cherkaev</td>
<td>University of Calgary, Calgary, AB, Canada</td>
</tr>
<tr>
<td>John Zobitz</td>
<td>Mathematical Biology</td>
<td>Adler</td>
<td>Augsburg College, Minneapolis, MN</td>
</tr>
</tbody>
</table>

2007

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathan Albin</td>
<td>Applied Mathematics</td>
<td>A. Cherkaev</td>
<td>Universität Duisburg-Essen, Essen, Germany and California Institute of Technology, Pasadena, CA</td>
</tr>
<tr>
<td>Renate Caspers</td>
<td>Stochastic Processes</td>
<td>Mason</td>
<td></td>
</tr>
<tr>
<td>Kenneth Chu</td>
<td>Complex Algebraic Geometry</td>
<td>Toledo</td>
<td>University of Texas at Austin, TX</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
6. Recent Ph.D. students

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Clay</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>University of Oklahoma, Norman, OK</td>
</tr>
<tr>
<td>Zrinka (Despotović) Keenan</td>
<td>Geometric Group Theory</td>
<td>Bestvina</td>
<td>Royal Bank of Scotland, Edinburgh</td>
</tr>
<tr>
<td>Young-Seon Lee</td>
<td>Math Physiology</td>
<td>Keener</td>
<td>Cornell University, Ithaca, NY</td>
</tr>
<tr>
<td>Andrew Oster</td>
<td>Mathematical Biology</td>
<td>Bressloff</td>
<td>The Ohio State University, Columbus, OH</td>
</tr>
<tr>
<td>Kazuma Shimomoto</td>
<td>Algebra</td>
<td>Roberts</td>
<td>University of Minnesota, Minneapolis, MN</td>
</tr>
</tbody>
</table>

2005

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renzo Cavalieri</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>University of Michigan, Ann Arbor, MI</td>
</tr>
<tr>
<td>Stefanos Folias</td>
<td>Mathematical Biology</td>
<td>Bressloff</td>
<td>Boston University, Boston, MA</td>
</tr>
<tr>
<td>An Hai Le</td>
<td>PDE</td>
<td>Schmitt</td>
<td>MSRI, Berkeley, CA</td>
</tr>
<tr>
<td>Fumitoshi Sato</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>Korea Institute for Advanced Study, Seoul, Korea</td>
</tr>
</tbody>
</table>

2004

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Guy</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td>Brynja Kohler</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Utah State University, Logan, UT</td>
</tr>
<tr>
<td>Eiko Koizumi</td>
<td>PDE</td>
<td>Schmitt</td>
<td>Ellis College, New York Institute of Technology online</td>
</tr>
<tr>
<td>Denis Lukic</td>
<td>Representation Theory</td>
<td>Miličić</td>
<td>Northwestern University, Evanston, IL</td>
</tr>
<tr>
<td>Greg Peipmeyer</td>
<td>Algebra</td>
<td>Roberts</td>
<td>University of Nebraska, Lincoln, NE</td>
</tr>
<tr>
<td>Thomas Robbins</td>
<td>Math Ecology</td>
<td>Lewis</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
2003

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emina Alibegović</td>
<td>Geom Group Theory</td>
<td>Bestvina</td>
<td>University of Michigan, Ann Arbor, MI</td>
</tr>
<tr>
<td>Anca Mustata</td>
<td>Algebraic Geometry</td>
<td>Clemens</td>
<td>University of British Columbia, Vancouver, BC, Canada</td>
</tr>
<tr>
<td>Andrei Mustata</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>University of British Columbia, Vancouver, BC, Canada</td>
</tr>
<tr>
<td>Bradford Peercy</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Rice University, Houston, TX</td>
</tr>
<tr>
<td>Matthew Rudd</td>
<td>PDE</td>
<td>Schmitt</td>
<td>University of Texas at Austin, TX</td>
</tr>
<tr>
<td>Inbo Sim</td>
<td>PDE</td>
<td>Schmitt</td>
<td>Utah State University, Logan, UT</td>
</tr>
</tbody>
</table>

2002

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicholas Cogan</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>Tulane University, New Orleans, LA</td>
</tr>
<tr>
<td>Martin Deraux</td>
<td>Complex Geometry</td>
<td>Toledo</td>
<td>Purdue University, West Lafayette, IN</td>
</tr>
<tr>
<td>Sonjong Hwang</td>
<td>Topology</td>
<td>Kapovich</td>
<td>Westminster College, Salt Lake City, UT</td>
</tr>
<tr>
<td>Blake Thornton</td>
<td>Geometric Topology</td>
<td>Kleiner</td>
<td></td>
</tr>
<tr>
<td>Sung Yil Yoon</td>
<td>Topology</td>
<td>Bestvina</td>
<td>Rensselaer Polytechnic Institute, Troy, NY</td>
</tr>
</tbody>
</table>

2001

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Cytrynbaum</td>
<td>Math Physiology</td>
<td>Keener</td>
<td>Institute for Theoretical Dynamics, University of California/Davis, CA</td>
</tr>
<tr>
<td>Miguel Dumett</td>
<td>PDE</td>
<td>Keener</td>
<td>Lawrence Livermore National Laboratory, Livermore, CA</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
6. Recent Ph.D. students

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Hohn</td>
<td>Numerical Analysis</td>
<td>Folias</td>
<td>Lawrence Berkeley National Laboratory, Berkeley, CA</td>
</tr>
<tr>
<td>Jian Kong</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>The Johns Hopkins University, Baltimore, MD</td>
</tr>
<tr>
<td>İsmail Küçük</td>
<td>Applied Mathematics</td>
<td>E. Cherkaev</td>
<td>American University, Sharjah, and Sakarya University, Turkey</td>
</tr>
<tr>
<td>Chong Keat Arthur Lim</td>
<td>Rep Theory</td>
<td>Miličić</td>
<td>University of Minnesota, Minneapolis, MN</td>
</tr>
<tr>
<td>Xiangdong Xie</td>
<td>Geom Group Theory</td>
<td>Kleiner</td>
<td>Washington University, St. Louis, MO</td>
</tr>
<tr>
<td>Chung Seon Yi</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>Virginia Polytechnic Institute and State University, Blacksburg, VA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Peter Brinkmann</td>
<td>Geom Group Theory</td>
<td>Gersten</td>
<td>University of Illinois/Urbana–Champaign, IL</td>
</tr>
<tr>
<td></td>
<td>Chin-Yi Chan</td>
<td>Algebra</td>
<td>Roberts</td>
<td>Purdue University, West Lafayette, IN</td>
</tr>
<tr>
<td></td>
<td>Irina Grabovsky</td>
<td>Statistics</td>
<td>Horváth</td>
<td>National Board of Medical Examiners, Jacksonville, FL</td>
</tr>
<tr>
<td></td>
<td>Sean Sather-Wagstaff</td>
<td>Comm Algebra</td>
<td>Roberts</td>
<td>University of Illinois/Urbana–Champaign, IL</td>
</tr>
<tr>
<td></td>
<td>Haoyu Yu</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>University of Minnesota, Minneapolis, MN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Kristina Bogar</td>
<td>Applied Mathematics</td>
<td>Keener</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td></td>
<td>Charles Harris</td>
<td>Analysis</td>
<td>Tucker</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td>Name</td>
<td>Field</td>
<td>Advisor</td>
<td>Institution</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Jon Jacobsen</td>
<td>PDE</td>
<td>Schmitt</td>
<td>Pennsylvania State University, State College, PA</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Jones</td>
<td>Comm Algebra</td>
<td>Roberts</td>
<td>University of Utah, Salt Lake City, UT</td>
<td></td>
</tr>
<tr>
<td>Nikolaos Tzolias</td>
<td>Algebraic Geometry</td>
<td>Kollár</td>
<td>Oklahoma State University, Stillwater, OK</td>
<td></td>
</tr>
<tr>
<td>Toshio Yoshikawa</td>
<td>Applied Mathematics</td>
<td>Balk</td>
<td>Utah State University, Logan, UT</td>
<td></td>
</tr>
<tr>
<td>Hsungrow Chan</td>
<td>Differential Geom</td>
<td>Treibergs</td>
<td>National Tsing Hua University, Hsinchu, Taiwan</td>
<td></td>
</tr>
<tr>
<td>Chi Kan Chen</td>
<td>Applied Mathematics</td>
<td>Fife</td>
<td>University of Utah, Post Doctoral</td>
<td></td>
</tr>
<tr>
<td>Jeffrey L. Fletcher</td>
<td>Geo Group Theory</td>
<td>Gersten</td>
<td>Louisiana State University, Alexandria, LA</td>
<td></td>
</tr>
<tr>
<td>Takayasu Kuwata</td>
<td>Algebraic Geometry</td>
<td>Kollár</td>
<td>Tokyo Denki University, Tokyo, Japan</td>
<td></td>
</tr>
<tr>
<td>Andrew L. Kuharsky</td>
<td>Mathematical Biology</td>
<td>Fogelson</td>
<td>Tulane University, New Orleans, LA</td>
<td></td>
</tr>
<tr>
<td>Timothy J. Lewis</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>New York University, NYC, NY</td>
<td></td>
</tr>
<tr>
<td>Natasa Macura</td>
<td>Topology</td>
<td>Bestvina</td>
<td>University of Michigan, Ann Arbor, MI</td>
<td></td>
</tr>
<tr>
<td>Eric Marland</td>
<td>Mathematical Biology</td>
<td>Keener</td>
<td>University of California/Davis, CA</td>
<td></td>
</tr>
<tr>
<td>Igor Mineyev</td>
<td>Group Theory</td>
<td>Gersten</td>
<td>Max-Planck-Institute für Mathematik, Bonn, Germany</td>
<td></td>
</tr>
<tr>
<td>Min Xie</td>
<td>Applied Mathematics</td>
<td>Othmer</td>
<td>Intermountain Health Care, Salt Lake City, UT</td>
<td></td>
</tr>
</tbody>
</table>

1998
1997

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yongnam Lee</td>
<td>Algebraic Geometry</td>
<td>Clemens</td>
<td>Korea Institute for Advanced Study, Seoul, Korea</td>
</tr>
<tr>
<td>Richard Mayer</td>
<td>Algebraic Geometry</td>
<td>Carlson</td>
<td>University of Massachusetts, Amherst, MA</td>
</tr>
<tr>
<td>Laura Smithies</td>
<td>Rep Theory</td>
<td>Taylor</td>
<td>Kent State University, Kent, OH</td>
</tr>
<tr>
<td>Peter Spiro</td>
<td>Mathematical Biology</td>
<td>Othmer</td>
<td>Incyte Pharmaceuticals, Wilmington, DE</td>
</tr>
<tr>
<td>Nien-Tzu Wang</td>
<td>Applied Mathematics</td>
<td>Fogelson</td>
<td></td>
</tr>
</tbody>
</table>

1996

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>José Burillo</td>
<td>Group Theory</td>
<td>Gersten</td>
<td>Tufts University, Medford, MA</td>
</tr>
<tr>
<td>Shirmping Chen</td>
<td>Topology</td>
<td>Toledo</td>
<td>Triology Technologies Inc., Taiwan</td>
</tr>
<tr>
<td>Ionut Ciocan-Fontanine</td>
<td>Algebraic Geometry</td>
<td>Bertram</td>
<td>Mittag-Leffler Institut, Djursholm, Sweden</td>
</tr>
<tr>
<td>John Dallon</td>
<td>Applied Mathematics</td>
<td>Othmer</td>
<td>Warwick University, Warwick, England</td>
</tr>
<tr>
<td>Monika Serbinowska</td>
<td>Statistics</td>
<td>Horváth</td>
<td>University of California at San Diego, La Jolla, CA</td>
</tr>
</tbody>
</table>

1995

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberto Castro</td>
<td>Geometry</td>
<td>Toledo</td>
<td>Mt. Holyoke College, MA</td>
</tr>
<tr>
<td>Adam J. Chmaj</td>
<td>PDE</td>
<td>Fife</td>
<td>Brigham Young University, Provo, UT (Post Doctoral) and Utah State University, Logan, UT (Post Doctoral)</td>
</tr>
<tr>
<td>Ha Dang</td>
<td>Applied Mathematics</td>
<td>Fife</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td>Sándor Kovács</td>
<td>Algebraic Geometry</td>
<td>Kollár</td>
<td>MIT, Cambridge, MA</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vy Khoi Le</td>
<td>Nonlinear Analysis</td>
<td>Schmitt</td>
<td>University of Colorado, Boulder, CO</td>
</tr>
<tr>
<td>Lingyan Ma</td>
<td>Statistics</td>
<td>Horváth</td>
<td>University of Georgia, Athens, GA</td>
</tr>
<tr>
<td>Uwe Mayer</td>
<td>PDE</td>
<td>Korevaar</td>
<td>Brown University, Providence, RI</td>
</tr>
<tr>
<td>Pavle Pandžić</td>
<td>Lie Groups</td>
<td>Miličić</td>
<td>MIT, Cambridge, MA</td>
</tr>
<tr>
<td>Romuald Sawicz</td>
<td>Applied Mathematics</td>
<td>Golden</td>
<td>University of Minnesota, Minneapolis, MN</td>
</tr>
<tr>
<td>Tomasz Serbinowski</td>
<td>Differential Geom</td>
<td>Korevaar</td>
<td>University of California/Irvine, CA</td>
</tr>
<tr>
<td>Robert Van Kirk</td>
<td>Mathematical Biology</td>
<td>Lewis</td>
<td>Henry’s Ford Foundation, Island Park, ID</td>
</tr>
</tbody>
</table>

1994

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldo Bernasconi</td>
<td>Group Theory</td>
<td>Gersten</td>
<td>Chile (not in academia)</td>
</tr>
<tr>
<td>John M. O’Reilly</td>
<td>Numerical Analysis</td>
<td>Stenger</td>
<td></td>
</tr>
<tr>
<td>Robert Shalla</td>
<td>Lie Groups</td>
<td>Miličić</td>
<td>Bronx Community College, NYC, NY</td>
</tr>
</tbody>
</table>

1993

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timothy Bratten</td>
<td>Lie Groups</td>
<td>Hecht</td>
<td>Argentina</td>
</tr>
<tr>
<td>Robert Dillon</td>
<td>Applied Mathematics</td>
<td>Othmer</td>
<td>Tulane University, New Orleans, LA</td>
</tr>
<tr>
<td>Azniv Kasparian</td>
<td>Algebraic Geometry</td>
<td>Carlson</td>
<td>University of Sofia, Bulgaria</td>
</tr>
<tr>
<td>Joo Kim Mok</td>
<td>Statistics</td>
<td>Mason</td>
<td>University of South Korea</td>
</tr>
<tr>
<td>Ming He</td>
<td>Probability</td>
<td>Ethier</td>
<td>Weber State University, Ogden, UT</td>
</tr>
<tr>
<td>Jeffrey McGough</td>
<td>Differential Equations</td>
<td>Schmitt</td>
<td>University of Nevada, Reno, NV</td>
</tr>
<tr>
<td>Endre Szabó</td>
<td>Algebraic Geometry</td>
<td>Kollár</td>
<td>Universität Bayreuth, Germany</td>
</tr>
<tr>
<td>Yuanhua Tang</td>
<td>Applied Mathematics</td>
<td>Othmer</td>
<td>Cornell University, Ithaca, NY</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randall Westhoff</td>
<td>Algebraic Geometry</td>
<td>Clemens</td>
<td>Bemidji State University, Bemidji, MN</td>
</tr>
<tr>
<td>Mario R. Candia</td>
<td>Real and Complex Geometry</td>
<td>Hecht</td>
<td>In industry, Chicago, IL</td>
</tr>
<tr>
<td>Gregory R. Conner</td>
<td>Algebra and Number Theory</td>
<td>Gersten</td>
<td>Brigham Young University, Provo, UT</td>
</tr>
<tr>
<td>Alessio Corti</td>
<td>Algebraic Geometry</td>
<td>Kollár</td>
<td>MSRI, Berkeley, CA</td>
</tr>
<tr>
<td>David J. Eyre</td>
<td>Applied Mathematics</td>
<td>Fife</td>
<td>University of Minnesota, Minneapolis, MN</td>
</tr>
<tr>
<td>Tina Ma</td>
<td>Statistics</td>
<td>Mason</td>
<td>Pharmaco LSR, Inc., Austin, TX</td>
</tr>
<tr>
<td>Denise White</td>
<td>Finite Groups</td>
<td>Gross</td>
<td>Westminster College, Salt Lake City, UT</td>
</tr>
<tr>
<td>Guangyan Yin</td>
<td>Applied Mathematics</td>
<td>Stenger</td>
<td></td>
</tr>
<tr>
<td>Jorge Devoto</td>
<td>Topology</td>
<td>Braam</td>
<td>International Centre for Theoretical Physics (ICTP), Trieste, Italy</td>
</tr>
<tr>
<td>Kenneth Ferguson</td>
<td>Topology/Geometry</td>
<td>Stern</td>
<td>First Quadrant, Pasadena, CA</td>
</tr>
<tr>
<td>Christopher Grant</td>
<td>Applied Mathematics</td>
<td>Fife</td>
<td>Georgia Tech, Atlanta, GA</td>
</tr>
<tr>
<td>Elham Izadi</td>
<td>Algebraic Geometry</td>
<td>Clemens</td>
<td>Harvard University, Cambridge, MA</td>
</tr>
<tr>
<td>Michael Kinyon</td>
<td>Differential Equations</td>
<td>Tucker</td>
<td>Indiana University at Southbend, IN</td>
</tr>
<tr>
<td>Yonghao Ma</td>
<td>Algebra</td>
<td>Roberts</td>
<td>Southwest Texas State University, San Marcos, TX</td>
</tr>
<tr>
<td>Cameron Wickham</td>
<td>Ring Theory</td>
<td>Roberts</td>
<td>Southwestern Missouri State University, Springfield, MO</td>
</tr>
</tbody>
</table>

1992

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorge Devoto</td>
<td>Topology</td>
<td>Braam</td>
<td>International Centre for Theoretical Physics (ICTP), Trieste, Italy</td>
</tr>
<tr>
<td>Kenneth Ferguson</td>
<td>Topology/Geometry</td>
<td>Stern</td>
<td>First Quadrant, Pasadena, CA</td>
</tr>
<tr>
<td>Christopher Grant</td>
<td>Applied Mathematics</td>
<td>Fife</td>
<td>Georgia Tech, Atlanta, GA</td>
</tr>
<tr>
<td>Elham Izadi</td>
<td>Algebraic Geometry</td>
<td>Clemens</td>
<td>Harvard University, Cambridge, MA</td>
</tr>
<tr>
<td>Michael Kinyon</td>
<td>Differential Equations</td>
<td>Tucker</td>
<td>Indiana University at Southbend, IN</td>
</tr>
<tr>
<td>Yonghao Ma</td>
<td>Algebra</td>
<td>Roberts</td>
<td>Southwest Texas State University, San Marcos, TX</td>
</tr>
<tr>
<td>Cameron Wickham</td>
<td>Ring Theory</td>
<td>Roberts</td>
<td>Southwestern Missouri State University, Springfield, MO</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Wiskin</td>
<td>Group Theory</td>
<td>Gross</td>
<td>University of Utah, Salt Lake City, UT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gary DeYoung</td>
<td>Applied Mathematics</td>
<td>Othmer</td>
<td>University of California/Davis, CA</td>
</tr>
<tr>
<td>Ya Li</td>
<td>Differential Equations</td>
<td>Keener</td>
<td>Teikyo Westmar University, Le Mars, IA</td>
</tr>
<tr>
<td>Ronald Lundstrom</td>
<td>Probability</td>
<td>Tavaré</td>
<td>Cimarron Software, Salt Lake City, UT</td>
</tr>
<tr>
<td>Maritza Sirvent</td>
<td>Approximation Theory</td>
<td>Alfeld</td>
<td>Ohio State University, Columbus, OH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David M. Austin</td>
<td>Topology</td>
<td>Stern</td>
<td>Institute for Advanced Study, Princeton, NJ and Grand Valley State University, Allendale, MI</td>
</tr>
<tr>
<td>Luis Hernandez Lamonedá</td>
<td>Geometry</td>
<td>Toledo</td>
<td>University of Chicago, Chicago, IL</td>
</tr>
<tr>
<td>Jesus Jimenez Reyes</td>
<td>Complex Geometry</td>
<td>Clemens</td>
<td>University of California/Riverside, CA</td>
</tr>
<tr>
<td>Frederick Phelps</td>
<td>Applied Mathematics</td>
<td>Keener</td>
<td>Oxford University, Oxford, UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mladen Božičević</td>
<td>Lie Groups</td>
<td>Miličić</td>
<td>Rutgers University, New Brunswick, NJ</td>
</tr>
<tr>
<td>Paul J. Joyce</td>
<td>Stochastic Processes</td>
<td>Tavaré</td>
<td>University of South California, Los Angeles, CA</td>
</tr>
<tr>
<td>Thomas Nordhaus</td>
<td>Applied Mathematics</td>
<td>Keener</td>
<td></td>
</tr>
<tr>
<td>Marc Stromberg</td>
<td>Numerical Analysis</td>
<td>Stenger</td>
<td>Texas Tech University, Lubbock, TX</td>
</tr>
</tbody>
</table>

Last revision: September 10, 2016, 18:08 MDT
6. Recent Ph.D. students

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Advisor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>James D. Walker</td>
<td>Applied Mathematics</td>
<td>Folias</td>
<td>Southwest Research Institute, San Antonio, TX</td>
</tr>
<tr>
<td>Miljenko Zabčić</td>
<td>Lie Groups</td>
<td>Hecht</td>
<td>MIT, Cambridge, MA</td>
</tr>
<tr>
<td>Bertram Zinner</td>
<td>Applied Mathematics</td>
<td>Keener</td>
<td>Auburn University, Auburn, AL</td>
</tr>
<tr>
<td>Paul R. Arner</td>
<td>CAGD</td>
<td>Barnhill</td>
<td>SDRC (Structural Dynamics Research Corporation), Cincinnati, OH</td>
</tr>
<tr>
<td>Phillip J. Barry</td>
<td>CAGD</td>
<td>Barnhill</td>
<td>University of Waterloo, Waterloo, ON, Canada</td>
</tr>
<tr>
<td>Bernard Bialecki</td>
<td>Numerical Analysis</td>
<td>Stenger</td>
<td>University of Kentucky, Lexington, KY</td>
</tr>
<tr>
<td>Roger Chen</td>
<td>Differential Geometry</td>
<td>Li</td>
<td>University of Toledo, Toledo, OH</td>
</tr>
<tr>
<td>J. Don Dockery</td>
<td>Applied Mathematics</td>
<td>Keener</td>
<td>Utah State University, Logan, UT</td>
</tr>
<tr>
<td>Greg A. Harris</td>
<td>Differential Equations</td>
<td>Schmitt</td>
<td>Auburn University, Auburn, AL</td>
</tr>
<tr>
<td>Nela Lakoš</td>
<td>Differential Equations</td>
<td>Schmitt</td>
<td>Ohio State University, Columbus, OH</td>
</tr>
<tr>
<td>Dennis Malm</td>
<td>Algebra</td>
<td>Goodearl</td>
<td>Northwest Missouri State University, Maryville, MO</td>
</tr>
<tr>
<td>Bruce R. Piper</td>
<td>CAGD</td>
<td>Barnhill</td>
<td>Rensselaer Polytechnic Institute, Troy, NY</td>
</tr>
<tr>
<td>Masaji Watanabe</td>
<td>Applied Mathematics</td>
<td>Othmer</td>
<td>Universität Stuttgart, Germany</td>
</tr>
<tr>
<td>Diana Woodward</td>
<td>Applied Mathematics</td>
<td>Hoppenstead</td>
<td>Michigan State University, East Lansing, MI</td>
</tr>
</tbody>
</table>

1987

Last revision: September 10, 2016, 18:08 MDT