A TOUR TO STABILITY CONDITIONS ON DERIVED CATEGORIES

AREND BAYER

ABSTRACT. Lecture notes for the Minicourse on derived categorieahl2007.
Preliminary version with many gaps, omissions, errors.r€xions welcome.

These lecture notes are a brief tour to Bridgeland’s spastabflity conditions
on derived categories, introduced in [Bri02]. A more cortgleersion will be
made available on the website of the Minicourse and/or myepage.

1. STABLE VECTOR BUNDLES AND COHERENT SHEAVES

Stability in algebraic geometry is a very classical concepthe two different
(but closely related) contexts of geometric invariant tiyeand stability of vector
bundles and coherent sheaves. We will say nothing aboubtineef, and take a
very fast tour through the latter.

Let X be a smooth, projective curve ovéra Riemann surface). i is a vector
bundle,d(E) its degree and(E) its rank, we call

its slope.
The following lemma is extremely crucial:

1.1.Lemma. Let0 - A — E — B — 0 be a short exact sequence of vector
bundles. Then

w(A) < u(E) < p(E) < p(B)
n(A) > p(E) < u(E) > u(B)
This follows by simple algebra from(E) = r(A) + r(B) andd(E) = d(A) +

d(B), but even more convincingly from the picture in figure 1, wheve set
Z(X) =r(X)+id(X)for X = A, E, B.

1.2. Remark. What we used in the above “proof by picture” are just two prepe
ties of the function?:

(1) Z is additive on short exact sequences; in other wo#lss actually a
group homomorphisny: K(A) — C.

(2) The image o¥/ is contained in some half-plane @ so that we can mean-
ingfully compare the slopes of objects.

http://math.utah.edw/bayer/
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Figure 1: See-saw property

1.3. Definition. A vector bundle is (semi-)stable if for all subbundlé¢s— E we
haveu(A) < u(E).

Equivalently (by the see-saw property), we could ask thaglilajuotientstl —
B we haveu(E) > u(B).

1.4. Examples.
(1) Any line bundle is stable.
(2) Anextensior) — Ox — F — L; — 0 between the structure sheaf and a
line bundleL, of degree one is stable if and only if the extension does not
split. (Exercise!)

1.5.Lemma. If E, E’ are semistable and(E) > p(E'), thenHom(E, E') = 0.

Proof. Factor any non-zero map via its imagefit, and use the definition and
see-saw property. O

Most interest in stable vector bundles is due to the fact $tettility allows a
meaningful study of moduli of vector bundles (in particuldre moduli space of
stablevector bundles of fixed Chern class is bounded, which is alsionot true
for the moduli of arbitrary vector bundles). However, for purposes the existence
of Harder-Narasimhan filtration is the most interestingeasp

1.6.Theorem. For any vector bundle® there is a unique increasing filtration
O=EyCFEiCEy,C---CFE,=F

such that the filtration quotient®’;/E;_; are semistable of slopge;, with 1; >
p2 > > .

We will only sketch a small part of the proof here: Consider short exact se-
quence) — E,_1 — E, — E,/E,_1 — 0. If the Harder-Narasimhan filtration
exists, it follows easily from the definitions and lemma hé&tt~,, / E,,_; has the
following property:

1.7.Definition. A maximal destabilizing quotient (mdq) is a quotiéht» B such
that for every other quotienE — B’, we haveu(B’) > u(B), and equality only
if the map factors vi&u — B — B'.

The mdq (if it exists) is obviously semistable and unique w# can show it
always exists, this would proof the theorem:
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If £ = B, thenE is semistable and we are done, otherwiseflet- £ — B
be the kernel. Sincg(FE) > u(B), we have (see-saw!)((E’) > u(FE), hence
the rank ofE’ is strictly smaller than the rank df, and by induction (*) we can
assume the existence of a HN-filtration f6f.

The HN-filtration of £’ then extends to a HN filtration df.

The complete proof (see e.g. [Bri02, section 2]) works in eaegory and for
any slope functior with the see-saw property and the following two properties:

(1) There is no infinite chain of subobjects
.‘—>E3‘—>E2‘—>E1‘—>EQ

with ¢(E;11) > ¢(E;) for all 4.
(2) There is no infinite chain of quotients

E(]—»El—»Eg—»...

with ¢(E;) > ¢(E;+) for all 7.

In particular, the proof always works in a category of fingadth?

2. T-STRUCTURES

2.1. Digression: Octahedral axioms. There seem to exist two myths about the
octahedral axiom in a triangulated categ@ry

(1) Itis not important.
(2) Since itis difficult to draw, it must be scary and diffictdtunderstand and

apply.

While the first one may be true to some extent, it definitelysesdo be true when
dealing with t-structures; however, fortunately the secaryth is definitely wrong.
The octahedral axiom answers a simple question: Given a asitign

A B9,

is there any way to relate the three corese(f), cone(g) and cone(g o f)?
Phrased this way, the axiom is easy to guess: they form amteieangle. More pre-
cisely, there is the following commutative diagram, whdteree (almost) straight
lines are part of an exact triangle:

2An abelian category has finite length if even arbitrary inérghains of subobjects and quotients
do not exist.
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In the special case whe®® = D(A) is the derived category of an abelian
category.A, and A, B, C' are objects concentrated in degree zero (identified with
objects inA, and f, g are inclusions, then the octahedral axiom specializes to a
very familiar statement:

(C/A)/(B/A) =C/B

More generally, in the same spirit where exact triangledtaeeplacement of ex-
act sequences, the use of the octahedral axiom replacdésafirmcategory proofs
using diagram chasing, referring to the snake lemmma, lenfraatc.

2.2.Exercise. Translate the lemma of 9 to a triangulated category, and @iitlv

2.3. Definition of a t-structure. The notion of a t-structure can be motivated by
the following question: Assuming we have an equivalenceesivdd categories
DY(A) = Db(B), can we understand the image .4f = A[0] in D*(B)? For
interesting examples (almost all Fourier-Mukai transfeyratc.) A does not get
mapped toB, so we would like to understand what structure the image! ah
D*(B) satisfies.

2.4.Definition. The heart of a bounded t-structure in a triangulated catggbris
a full additive subcategory such that
(1) For ki > ko, we haveHom (A[k;], Alkz]) = 0.
(2) For every objectt in D there are integerge; > ky > --- > k, and a
sequence of exact triangles

F'E F'E F2F— - g /F"E
A A A,

The concept of t-structures was introduced in [BBD82], whgrequired read-
ing for anyone interested in details about t-structures.
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2.5. Remarks.

(1) A bounded t-structure is uniquely determined by its hasinich allows us
to omit the definition bounded t-structure in this note.

(2) A[0] C DP(A) is the heart of a t-structure. Property (1) says that there
are no Ext-groups in negative degreend property (2) is the filtration of a
complex by its cohomology objects, induced by successipéicgtion of
the truncation functor,,.

(3) The coreA is automatically abelian: A morphis|d — B between two
objects inA is defined to be an inclusion if its cone is alsadnand it is
defined to be a surjection if the cone is/il].

2.6. Exercise. Use the filtration with respect to the standard t-structureshow
that for a smooth projective curv&, every object inD®(X) is the direct sum of
its cohomology sheaves.

The simplest examples of non-trivial t-structures aremgivgtilting at a torsion
pair.

2.7. Definition. A torsion pair in an abelian categoryl is a pair (7, F) of full
additive subcategories with

(1) Hom(7,F) = 0.

(2) Forall £ € Athere exists a short exact sequence

0—-T—F—F—0
withT € T,F € FF.

Property (1) implies that that the filtration in (2) is autdmoally unique and
factorial.

2.8. Examples. The canonical example of a torsion pairds= Coh X, where
we define7 to be the torsion sheaves aftdthe torsion-free sheaves.

For a more interesting example, ldt = Coh X be the category of coherent
sheaves on a smooth projective cut¥e andy € R a real number. Letds,
be the subcategory generated by torsion sheaves and vecidieb all of whose
HN-filtration quotients have slope 1, and. A, the category of vector bundles
all of whose filtration quotients have slope p. Then(A>,, A<,) is a torsion
pair: property (1) follows from lemma 1.5, and (2) is obtairt®y collapsing the
HN-filtration into two parts: we lef’ = E; for i maximal such that,; > pu.

2.9.Proposition. Given a torsion pail(7, F) in A, the following defines the heart
of a bounded t-structure:

A= {E e D'(A) ( HY(E) € T,H™\(E) € F, H'(E) =0 fori #0,~1}
SNote that it isnotenough to obvserve that a morphisff0] — B[—n] for some objects!, B €

A would induce the zero-morphism on cohomology. Any nonidfiglement inExt" (A, B) forn >
0 yields a non-zero morphismt — B[n] in D®(A) that induces the zero morphism on cohomology.
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Objects inA can be interpreted as a pdif, F), T € 7,F € F and an el-
ement inExt! (T, F'). Objects inA* are instead a paifF, 7") and an element in
Ext?(F,T).

2.10.Exercise. Let X = P', A = Coh X, and let A? be the tilted heart for
the torsion pair(A>,.A<o). Let@ be the Kronecker quiver (the directed quiver
with tow vertices and two arrows), and I1&t-: D?(P') — D’(repc(Q)) be the
equivalence induced by the tilting bundie= O @ O(1). Show thatA! is the
inverse image of the heart of the standard t-structure.

2.11.Exercise. Consider an elliptic curveé?, and its auto-equivalencé: D°(E) —
D'(E) given by the Fourier-Mukai transform of the Poinédine bundle. Deter-
mine the image(Coh E) of the heart of the standard t-structure.

3. STABILITY CONDITIONS ON A TRIANGULATED CATEGORY

3.1. Definition. A slicing P of a triangulated categoryD is a collection of full
additive subcategorie®(¢) for each¢ € R satisfying
(1) P(o+1) =P(o)[1]
(2) Forall ¢1 > ¢ we haveHom (P (¢1), P(¢p2)) = 0.
(3) For each0 # E € D there is a sequencg;, > ¢o > --- > ¢, of real
numbers and a sequence of exact triangles

(1) FOF F'E F?2F— - Frlp F'E

Ay Ay Ay
with A; € P(¢;) (which we call the Harder-Narasimhan filtration &f).

3.2. Remarks.

(1) We call the objects ifP(¢) the semistable objects of phase

(2) Given the slicingP, the sequence ap; and the Harder-Narasimhan fil-
tration are automatically unique. We sgt(E) = ¢, and¢,(E) = ¢,
(where we sometimes omit the subscipt

(3) If 9~ (A) > ¢ (B), theHom(A, B) = 0.

(4) If P(¢) # 0only for ¢ € Z, then the slicing is equivalent to the datum of
a bounded-structure, with heard = P(0).

(5) More generally, given a slicing, let.A = P((0, 1]) be the full extension-
closed subcategory generated by &l(¢) for ¢ € (0, 1]; equivalently,A is
the subcategory of objecfs with ¢5(E) < 1 and¢5(E) > 0. ThenAis
the heart of a boundedstructure. In other words, a slicing is a refinement
of a bounded-structure.

3.3.Exercise. Prove the claim in (5).

4An extension of two objectd, B in a triangulated category is any objdcthat fits into an exact
triangleA — E — B —1,
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While this gives a notion of semistable objects and sucubgsfeneralizes
Harder-Narasimhan filtrations, it is rather unsatisfyihgttwe have to specify the
semistable objects explicitly (instead of defining them liaigly by a slope func-
tion as in the case of vector bundles). The remedy for thisihiethe following
(somewhat surprising) definition:

3.4.Definition. A stability condition on a triangulated categofyis a pair (Z, P)
whereZ: K(D) — C is a group homomorphism (called the stability function or
central charge) andP is a slicing, so that for every) # E € P(¢) we have
Z(E) = m(E) - ¢ for somem(E) € R,.

3.5.Lemma. To give a stability condition of® is equivalent to giving a heartl
of a bounded-structure and a group homomorphis#y : K(.A) — C such that
ZA([A]) e H={z € C"|0 < arg(z) < 1} for all objectsA € 4, and such that
Z 4 “has the Harder-Narasimhan property”.

If A is the heart of a boundetstructure onD, then K(D) = K(A) (even
thoughD might not be equivalent td*(.A)), so it is clear how to go fron to Z 4
and vice versa. Given the stability condition, we get= P((0, 1]) as before; by
definition of a stability condition, anfP-semistable object is sent by Z; since
any object inA4 is an extension of semistable ones, this is true for all abjecA.
Then one can show that th&-semistable objects il are exactly the semistable
objects with respect t®.

Conversely, givend and Z 4, we can defineP(¢) for 0 < ¢ < 1 to be the
subcategory of 4-semistable objects i of phasep.

3.6. Example. If X is a smooth projective curve ard = DY(X), let A =
Coh X be the heart of the standardtructure, and (E) = — deg(E) +i-rk(E).
Then Z is a stability function with the Harder-Narasimhan propeand thus in-
duces a stability condition oB®(X).

The same construction does not work for higher-dimensivaaéties.

3.7. Example. Let @ be a quiver with relationg?, such that its path algebra is
finite-dimensional. Letd = Mod(Q, R) be its category of representations. Then
K(A) = K(DY(A)) = @D, Z. so a stability function ford is just given by

a complex number, € H for every vertexg € @, of the quiver. (Given an
object in A, its class in the-group is anon-negativdinear combination of the
classes of the one-dimensional simple representationsiatsd to the vertices, so
its image undetZ will also lie in the upper half plane.) Sincé has finite length,

Z automatically has the Harder-Narasimhan property.

3.8. Remark. The condition thatZ sends objects ofl to the upper half plane is
highly non-trivial. Already for a projective surfacg, there is no central charge
K(D"(S)) — C that would map objects iioh S to the upper half plane.
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4. SPACE OF STABILITY CONDITIONS

Given a stability conditiorc = (Z,P) on D and an objectt € D with
semistable Harder-Narasimhan filtration quotieAfswe define itsmasswith re-
spect tao to bem,(E) = ,|Z(A;).

We can define a generalized metric on the set of stability itiond on £

_ _ meq (E
do1,02) = subpspep {1672 () = 6,1 ()], |65 (E) - 6% (E)], llog (331 |
€ [0, 4+00]
From now on, we assume for simplicity either that
(1) K(D) is finite-dimensional, or
(2) assume that the numerical Grothendieck gm((pD)5 is finite-dimensional,
and restrict our attention to stability conditions for witbe central charge
Z: K(D) factors via\N (D).
So in either cas€Z is just a linear map from a finite-dimensional vector space to
C.
For technical reason, we need to exclude some degenerail@ystonditions:

4.1. Definition. A stability conditionss = (Z, P) is called locally finite if there
existse > 0 such thatP((¢ — ¢, ¢ + ¢€)) is a category of finite length for alh € R.

Let Stab(D) be the space of locally finite stability conditions @nhwith the
topology generated by the generalized metrigbove. Set’ = K(D) of K =
N (D) accordingly.

4.2.Theorem. The spac&tab(D) of (numerical) stability conditions is a smooth
finite-dimensional manifold such that the map

Z: Stab(D) - KY, o= (Z,P)—Z
is a local chart at every point @§tab (D).

In other words, we can deform a stability conditio#, P) (uniquely) by de-
forming Z.

Given(Z,P) andZ’ “nearby” Z, we will explain how to determin®’ “nearby”
P such that(Z’, P’) is again a stability condition. Givest € R, consider the
categoryA. = P((¢ — €, ¢ + €)). The central charg€ maps objects i, to the
small sectoiR~ - ™ (¢—&9te) We assumeZ’ is nearbyZ, henceZ’ mapsA. to
some slightly bigger sector i@i; it will still be small enough that we can define the
phases),: (A) of objectsA € A, with respect ta7’.

However, sinced, is usually not abelian, we need to be a little more careful to
define stability with respect t@’: we say:: A — E € A, is a strict inclusion if

>The numerical Grothendieck group is the quotientrdfD) by the null-space of the bilinear
form x(E, F) = x(RHom(E, F)).
he precise statement is that there is a subspacef K, only depending on the connected
component: of Stab(D), such thatZ: Stab(D) — Us is a local homeomorphism. However,
when the image of the integral lattice i under Z is a discrete subset @ for any Z in the
connected component, thék = K.
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the cone is also ind.. We sayFE is Z'-stable if there is no strict inclusioA — E
with ¢Z’(A) > ¢Z’(E)

Then we definegP’(¢') (for ¢’ ~ ¢) to be the subcategory df’-semistable
objects of phase’ with respect ta7’.

4.3. Example. Assume that in4. there is an exact triangld — F — B, such
that A, B have no strict subobjects i, andA is the only strict subobject of. In
particular,A, B are stable for = (Z,P), and will also be stable for' = (7', P’).
(1) If the parallelogran®, Z([A]), Z(E), Z(B) has positive orientation, then
E'is stable.
(2) If the parallelogram has negative orientation, tiiers unstable, and —
A — FE'is the HN filtration ofE.

So if the orientation of the parallelogram changes betwgeand Z’, then £
changes from being stable to unstable, or vice versa.

Z(E) 2(E)
Z(B) Z(A)

Z(A) Z(B)
(a) E is stable (b) E is unstable

Figure 2: A simple wall-crossing

4.4, Example: D°(P'). Consider the heart obtained by tilting at the torsion
pair (A>o, A<p). Itis generated by)(0) andO(—1)[1] and extensions. The short
exact sequence8(k) — O(k + 1) — O, for k € Z give, after appropriate rota-
tion, extensions ind? showing that®,, for z € P! (and thus all torsion sheaves),
O(n) forn > 0andO(n)[1] for n < 0 are all objects inA*. All other objects inA’
are decomposable. By example 3.7 and exercise 2.10, aryeabidkg, z_1) € H?
gives a stability condition witlZ (O) = zp andZ(O(—1)[1]) = z_;.

(1) If arg(z9) < arg(z_1), then all the (shifts of) line bundles listed above
are stable. Up to reparametrization ©fby an element irGL2(R) (and
accordingly adjusting the phases of stable objects), thlslgy condition
is equivalent to the standard one given in example 3.6. Se@figrhich
shows the images of the stable objects, with arrows denaotiigsions.

(2) If arg(zp) > arg(z_1), thenO, O(—1)[1] are the only stable objects .

This describes a chamber of the space of stability condifiand the natural
question is what happens when we defo#rso that one of:, z_; leaves the
upper half-plane.

If we are in case (2) and, say, 1 passes the positive real line, then the stable
objects don’t change; however, the new hedrt= P((0, 1]) is generated by the
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o)

Figure 3: Stable objects in case (1)

stable objects) and O(—1)[2]. There are no extensions or morphisms between
these two objects, sd’ is isomorphic to the category of pairs of vector spaces
(representations of the algelitan C). This is the easiest example of a hedftof
a bounded t-structure whose bounded derived catef8(yl’) is not isomorphic
to the original derived category.

The most interesting case is when; lies on the negative real line, ang
passes the positive real axis. Also let us assumeRhat;) > —#(zp). We have
to consider the categotd. = P((—¢,¢€)), wheree is small but big compared to
the phase ofjy. The stable objects in this interval are

(1) The skyscraper sheavéx,,
(2) all O(k) such thatk®(zp) + (k — 1)R(z—1) > 0, i.e. allk > ky =
Wiy and

(3) all O(k)[1] for k < ko.
Whenz_; passes through the real axis, then the strict inclusidfis)) — O(ko +
1) — ... will destabilize all butO (k) (see also fig. 4); similarly the strict in-
clusionsQ, — O(k)[1] — O(k + 1)[1] for k < ko — 2 will destabilize all but
O(ko —1)[1]; finally O (ko) — O, — O(ko — 1)[1] will destabilize the skyscraper
sheaves.

0 oMol
—1) -

Figure 4: Inclusions irP((—e, ¢)).

Hence the only “surviving” stable objects af& k), O(ko — 1)[1], and we get
a stability condition of case (2) for the heart generatechiegé¢ two objects.

For a much more detailed study of the space of stability d¢adi onD®(P'),
see [Oka06].
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