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Chapter 2
2.2.1 (Miles) The ordering of the vertices of a knot is very important. If the the orderof the vertices is changed you might not only change the knot, but you mightnot even get a knot. Take for example the following unknot:

The �rst picture shows an unknot but in the second (where the order of thevertices is changed) we no longer have a knot (because it isn't simple).Another simple example shows how that trefoil knot can be turned into theunknot if the ordering of the vertices is changed. Take the following trefoil:3
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The �rst picture shows the trefoil, the second has the exact same vertices, butthe order is again changed. Notice in the second picture the unknot is the resultof changing the order of the vertices.Thus if the order of the vertices is changed you may get a di�erent knot, or youmay not even get a knot at all.2.2 (Charlotte) Prove that the vertices of a knot form a well-de�ned set.A set of points fpig in R
3 is a de�ning set for a knot K if the knot given byfpig is K.A set of vertices for a knot K is a de�ning set fpig for K such that no propersubset of fpig is a de�ning set for K.A corner of a knot K is a point p on K so that the points on K near p do notlie in a single line.The set of corners of a knot is well-de�ned.We want to show that a point p of the knot K is a corner if and only if p is inevery set of vertices for K.Suppose a point p of the knot K is a corner. Then p must be in every de�ningset for K, and so it must also be in any set of vertices for K.Next, we show that if p is in every set of vertices, then p must be a corner byshowing that if p is not a corner then p is not in the set of vertices.For a knot K, de�ned by the points fp1; p2; :::; png, if p1 is a point that is nota corner, then K can also be de�ned by the subset fp2; :::; png, because a point



5that is not a corner is a point lying on a straight line, so removing such a pointdoes not a�ect K. So p1 is not in the set of vertices, because without p1, thesubset fp2; :::; png is still a de�ning set for K.So any set of vertices is exactly the set of corners.3.1 (Alex)3.2 (Alex)3.3 (Alex) Problem 2.3.3: Show there is only one planar knot.This is equivalent to taking any planar knot K = (v1; v2; :::vn) and deforming itinto the unknot. For any vertice vi, de�ne �(vi), the angle of the vertice, as theangle between the line segments [vi�1; vi] and [vi; vi+1]. Notice that ��(vi) = 360,but �j�(vi)j = 360 i� K is convex.We've already shown in 2.3.1 that all convex planar knots are equivalent to theunknot, so these knots aren't interesting. Instead, let's look at knots that arenot convex. Note that it su�ces to show that any non-convex knot of n verticescan be reduced to a non-convex knot of n � 1 vertices, and the desired resultfollows from induction.Knots that are not convex are knotsK where �j�(vi)j > 360. Since ��(vi) = 360,9 vi where �(vi) has opposite sign from �(vi�1). Let all such vi be called switches.Using any switch vi we will be able to �nd a point we can remove with anelementary deformation. The reason is that, to prevent vi itself from beingremoved, we require another switch, vj, somewhere in the knot. (See FigureA) With one exception, this vj will also require another switch to prevent itselffrom being removed. Since any knot has only a �nite number of vertices, therecan only be a �nite number of switches, so at least one switch can be removedvia an elementary deformation, reducing K to a knot with n vertices.There is one exception to this rule. It is possible that the switch vj cannot beremoved because it is blocked by the switch vi. But then the only way to blockvi will be with a spiral. (See Figure B) To escape from the spiral will requireanother switch vk, which in turn will require a switch to keep itself from beingremoved. By the same logic as before, then, there is at least one switch thatcan be removed, simplyfying K into an n� 1 knot.3.4 (Brian) �Thrm: Any knot formed by 4 vertices is the unknot. We have threebasic cases:Case 1: A square is formed.Case 2: A overcrossing as seen going from P1 to P2.Case 3: A undercrossing as seen going from P1 to P2.For case A we have a simple deformation that takes point 3 to the center ofthe square. This move is seen as taking point 3 to the dotted line. Thisautomatically gives us the unknot.
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Figure 1: Start as a square box and then take either point 2 or 4 and bring it to themidpoint and you will form a triangle. This is just the unknotFor case B and C look at the following page for the �gures.Since this contains all possible cases we have shown that all 4 vertice knots arethe unknot.3.5 (Tim) Let K be a knot determined by points (p1; p2; ::::pn). Show that thereis a number z such that if the distance from p1 to p1' is less than z, then Kis equivalent to the knot determined by (p01; p2; :::pn). Similarly, show there isa z such that every vertex can be moved a distance z without changing theequivalence class of the knot.for the region around p1 consider the two closest connected line segments[p1; p2][pn; p1] Because the knot is a simple polygonal curve there must existan open tubular region centered on each of these line segments of radii a and bwith a < b such that no line segment other than [p1; p2] [p2; p3] [pn; pn�1] [p1; pn]pass through these regions. Because p1 p2 and pn are centered in their tubularregions if we move p1 by an amount z < a Then we will have moved the pointby less than the radius of the tube. Therefore the resulting line segment willalso still be in the open tubular region and so the knot could not have possi-bly passed through itself. Since we said before that no other segments passedthrough this region. Thus there always exists a z by which we may shift p1 top01 without changing the knot.if instead of choosing z such that z < a if for each point we choose z< a2 theneven if both end points are moved simultaneously the resulting line segment canmove less than half the distance towards the closest line and that line can moveless than half the distance also which means that no line segments can crossand so there also must exist a z which preserves the knot when every point ismoved simultaneously.
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Figure 2: Here we start withan overcrossing of our knot.
Figure 3: Here we havetaken point P1 and taken itto the midpoint of [P3,P1].After performing this el-ementary deformation wehave made the knot into atriangle. This is again theunknot.

Figure 4: Here we start withan undercrossing. Figure 5: After an elemen-tary deformation we have atriangle. In this step wehave taken point P3 to themidpoint of [P2,P3] to getrid of the point This showswe get the unknot as ex-pected.



8 3.6 (Jason)Theorem 1. Let K be a knot determined by (p1; p2; :::; pn). Then there is anumber z such that if the distance from p1 to p01 is less than z then K is equivalentto the knot K 0 determined by (p01; p2; :::; pn).Let K be a knot de�ned by (p1; p2; :::; pn) then by the stated theorem there existsan equivalent knot K 0 and this knot can be created using simple deformationsto move p1 to the position p01.By de�nition of a knot the cyclic permutation of points (p1; :::; pn) de�ne equiv-alent knots. We then apply a cyclic permutation of points to the knot K 0 to getthe knot de�ned by the points (pi; pi+1; :::; p01; :::; pj) and then transform it intoan equivalent knot K 00 of points (p0i; pi+1; :::; p01; :::; pj) This process continues anarbitrary number of times for all knots equivalent to our general knot K.3.7 (Tim) Generalize the de�nition of elementary deformation and equivalence,to apply to links. (your de�nition should not permit one component to passthrough another.)A link L and a link L' consisting of sets of non intersecting knots are elementarydeformations of each other when: 1) L' contains only one knot K' whose pointsdi�er from the points of the knots in L and K is an elementary deformation ofa knot K in L and 2) The triangle spanned by the di�erence of the knot in Land L' does not intersect any other knot.4.1 (Onye) Suppose K is a knot de�ned by (p1; p2; : : : ; pn), and J is a knot de�nedby (q1; q2; : : : ; qn). If K and J have regular projections, then the number ofcrossings for both of them in R
2 is the same. Since, K and J have the samenumber of crossings and vertices, and their diagrams are identical, we can easilyundertake an elementary deformation such that (p1; p2; : : : ; pn) is equivalent to(q1; q2; : : : ; qn).2.4.2 (Miles)Problem: Sketch a proof of theorem 1.Theorem 1: Let K be a knot determined by the ordered set of points (p1,p2, ... , pn). For ever number t > 0 there is a knot K 0 determined by an orderedset (q1, q2, ... , qn) such that the distance from qi to pi is less than t for all i,K 0 is equivalent to K, and the projection of K 0 is regular.A regular projection satis�es the following conditions:1) No line joining two vertices is parallel to the vertical axis.2) No vertices span a plane containing a line parallel to the vertical axis.3) There are no triple points in the projectionFirst label each arc a1; a2; :::; an where a1 connects p1 to p2, a2 connects p2



9to p3, and so on, ending with an connecting pn to p1. Then, for any t > 0construct an open ball at every vertex with radius t. If a point pi is moved toany other point qi in the open ball around it the distance between pi and qi willbe less than t.Fix p1 (that is let q1 = p1). Now, if a1 causes part of the projection to not beregular it can be moved (via moving p2) so that the irregularities are gone, andthe knot is still equivalent. There is a single line running through p1 which isparallel to the vertical axis. If this line runs through the open ball around p2then remove it from the open ball. Also, there will be a �nite number crossingsin the diagram. At each of these crossings create a plane that is parallel to thevertical axis, and runs through the projection of p1 and the crossing point. Ifany of these planes intersect the ball around p2 then remove that region fromthe ball. We know the deleted ball will be nonempty because a ball with a �nitenumber of slices taken out will always be nonempty. Now if p2 is moved to anypoint in the ball that we have created it will satisfy the conditions of makingthe projection regular, and will be within distane t of its old position. However,we may still need to limit further the places p2 can be moved to ensure thatK 0 is equivalent to K. Do not let a1 be moved anywhere that would cause itto cross another arc in the knot. We know we can do this from theorem two.This still leaves in�nitely many places in the ball around p2 that we can movep2. Pick one and label it q2.Follow this same procedure for a2, only this time we need to conscider condition2 (above) for a regular projection. If the plane that contains a1 and is parallelto the vertical axis runs through the ball around p3, then remove that portionof the ball also. Continue doing this with the rest of the vertices. When youare �nished there will be a new knot K 0 that is equivalent to K (made up ofvertices q1; q2; :::; qn), has a regular projection, and every qi is within distance tof pi.4.3 (Onye) We are given that K is determined by the sequence (p1; p2; : : : ; pn) andhas a regular projection. This means that when K is projected from R
3 to R

2,no three vertices of K are collinear. It also means that no singular point pi ofK is on the same point as any other point pl of K. We are also given that K 0has equal number of vertices as K such that t > 0, qi� pi < t for all i.Then when K 0 is projected from R
3 to R

2, it is going to be a regular projection.Having equal number of vertices and crossings as K, it is therefore equivalentto K because we can undertake some elementary deformations to transform K 0into K.4.4 (Charlotte)2.4.4 Show that the trefoil knot can be deformed so that its nonregularprojection has exactly one multiple point.
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5.1 (Jason) HW. 5.1 De�nition of an oriented link. Two de�nitions came to mindwhen considering this what an oriented knot is. The �rst is the simplest anoriented link is the union of oriented knots. But this seems to lack a feel for theword oriented and more restrictive de�nition might be interesting for examplea link is oriented if at every crossing of knots k1; ::; kn in our diagramed link theorientations of the overlapping strands is opposite i.e. ! or " #.5.2 (Brian) What is the largest possible number of distinct oriented n componentlinks which can determine the same unoriented link, up to equivalence?b)Show that any two oriented links which determine the unlink as an unorientedlink are oriented equivalent.Part a)Each link can be oriented two ways which we will call (F,B). Given two links wecan have FF,FB,BF,BB. This is just the binomial theorem of probability. For 2choices and N links, we have 2N possibilities that gives a set unoriented link asa maximum. One possibility of reaching this upper bound would be to �nd nnon-reverable(given that there are an in�nite number of distinct non-reversableknots) knots and link them up into a long chain. This would give us our upperbound. Part b)By looking at the bottom of the following �gure, we see that theunlink is just the union of two unknots. By the upper four pictures it is shownthat each unknot is oriented equivalent. So the Union of Unknots is orientedequivalent as well.5.3 (Miles) Explain why if an oriented knot is reversible then any choice of orien-tation is reversible.Let K be an oriented knot. Then it can be be determined by an ordered setof vertices (p1; :::; pn). The reverse of this knot is the knot Kr with the samevertices, but their order reversed. A knot is reversible if K and Kr are orientedequivalent. If you chose an orientation of a reversible knot, then K is orientationequivalent to Kr. However, since there are only two ways to orient a knot, and
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Figure 6: The top four �gures show that the unknot is orientable equivalent. Thebottom two show that the unlink is just two unknots.if you chose the other orientation it is the knot Kr, it follows that if a knot isreversible then any choice of orientation is reversible.5.4 (Tim) Show the (p,p,q) pretzel knot is reversible.The (p,p,q) pretzel knot is equivalent to the (p, q, p) pretzel knot. If youconsider the symmetric diagrams of the (p,p,q) pretzel knot it is clear that arotation by 180 degrees changes the orientation of the diagram but not thediagram itself. Thus the (p, p, q) pretzel knot is reversible.5.5 The knot 817 is the �rst knot in the appendix that is not reversible. Below isa series of diagrams to show that the trefoil knot is reversible by Reidemeistermoves. The second set of diagrams shows knot 51, and then how it appears ifyou ip the knot in 3-dimensional space. Because it looks the same but orientedin the opposite direction, this knot is reversible. With great di�culty, this couldalso be shown by Reidemeister moves.
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Chapter 3

1.1 (Onye) 13
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1.2 (Brian) Show that the given knot is equivalent to the unknot by performing aseries of unknots.
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Figure 7: Here we perform steps of Reidemeister moves to show that this is equivalentto the unknot.



162.1 (Miles) I counted a total of four knots with with seven or fewer crossings thatwere colorable. They were the 31; 61; 74; and the 77 knots. Here are the coloringI found of them.31:

61:

74:
77:



172.2 (Tim) For which integers n is the (2, n)-torus knot colorable? For which valuesof n is the n twisted double of the unknot colorable? (2n is the number ofcrossings in the vertical band of the n-twisted double of the unknot)if the diagram is colorable then the left strand of the torus knot must be adi�erent color from the right one since if they were both the same color thenthe entire knot would be forced to be the same color. If we let the left strandbe red and the right strand be green then the �rst crossing will leave us with agreen strand and then a blue strand from left to right then a blue strand anda red strand and then a red strand and a green strand again. Clearly after thispoint the pattern repeats. We had to go through 3 crossings to get to a pointwith red on the left and green on the right which is the coloring we started withso we have found a colorable knot and if we add three more crossings then wewill also have a colorable knot. therefore any (2, 3n)-torus knot is colorable.Again the n twisted double of the unknot must start with two di�erent colorstrands on top or the whole thing would be a single color. Let the left strandstarting in to the twists be red and the right strand be green. In order for avalid coloring to be found the vertical band of twists would need to end withblue on the left and red on the right. the color changes as before leaving uswith a sequence rg gb br3.2.3 (Onye) I shall attempt to explain the colorability of a (p,q,r) pretzel knot with-out reference to the determinant or modularity of the knot since these ideas hadnot been introduced in section 2 of the chapter at the time of this exercise.My trial of all the possible combinations of colorings did not seem to work. Ingeneral, a (p,q,r) pretzel knot where p,q, and r are di�erent, produce a pretzelknot that is always not colorable. However, when p is odd and is set to be equalto r, and q is an odd number less than p and r, the system becomes colorable.Some examples of such a combination are the (5, -3, 5), (7, -5, 7), and (9, -7,9) pretzel knots. This concludes the discussion.3.2.5 (Brian) Part a) For the Reidemeister move 1 we obviously don't change linkingnumbers since this is just an untwisting. Even if the twisting crosses overanother link, by performing a R2 move to seperate them we get a link with nocrossing and we have the same linking number if R2 works. So we must look atR2 and R3. These are performed on the next page as Fig 2.diagram.Part b) Show that the Whitehead Link has linking number 0. See �gure onfollowing page - Fig. 3.Part c) Two examples that have linking numbers of 3 and 4. See last page(Fig.4)2.6 (Charlotte) The sum used to compute linking numbers can be split into thesum of the signs of the crossings where K passes over J, which we will writeas cr(K,J) and the sum of the signs of the crossings where J passes over K,
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Figure 8: Reidemeister moves 2 and 3 to show that the linking number is invarientto any R move that we can make on any 2 links. Obviously this also applies to morethan 2 links by making sure each triangle only passes through 1 link at a time.
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Figure 9: Simply by putting the appropriate linking number of 1 we show that it is0.
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Figure 10: Here are two examples with di�erent linking numbers.
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cr(J,K), where each right-handed crossing is assigned a +1 and each left-handedcrossing is assigned a �1.a) Use Reidemeister moves to show that each sum is unchanged by a deforma-tion.The �rst type of move does not a�ect cr(K,J) or cr(J,K), because it only involvesone of the knots, either K or J, passing over itself.The second type of move will always involve one right-handed (+1) and oneleft-handed (-1) crossing. The sum of these is zero, so this move will not a�ectcr(K,J) or cr(J,K).The third type of move involves three strands and three crossings. Regardlessof orientation and to which knot each strand belongs, this move will not a�ectthe linking number because the three crossings that exist before the move isperformed are the same as the three crossings which result; they simply occurat a di�erent place in the diagram. Therefore cr(K,J) and cr(J,K) are unaltered.b) The value of cr(K,J) � cr(J,K), is unchanged if a crossing is changed in adiagram.At any crossing, either K passes over J or J passes over K. There are also twopossible orientations.In the �rst case, if K passes over J, and J passes under from the right, we getcr(K,J)� cr(J,K) = (+1)� 0 = +1. If switched so that J passes over K, thenK will pass under J from the left, giving 0� (�1) = +1.In the second case, if K passes over J, and J passes under from the left, we getcr(K,J)� cr(J,K) = (�1)� 0 = �1. If switched so that J passes over K, thenK will pass under J from the right, giving 0� (+1) = �1.
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23So switching the crossing does not a�ect cr(K,J)� cr(J,K).c) If the crossings are changed so that K always passes over J, then cr(K,J)�cr(J,K) is zero.Since deforming the diagram with Reidemeister moves does not change eithercr(K,J) or cr(J,K), and switching crossings so that K passes over J or J passesover K does not change the di�erence of the sums cr(K,J)�cr(J,K), the diagramof a link can be deformed by these two methods until the projections are disjoint.At this point it is clear that cr(K,J) = cr(J,K) = cr(K,J)� cr(J,K) = 0.d) The linking number is always an integer, given by either of the two sums,cr(K,J) or cr(J,K).The text de�ned the linking number to be an integer given by (cr(K,J) +cr(J,K)) � 2. Since we have shown that cr(K,J) � cr(J,K) = 0 if all thecrossings are changed, and changing a crossing does not alter the value ofcr(K,J)� cr(J,K), then cr(K,J)� cr(J,K) must always be zero. Thus, cr(K,J)and cr(J,K) must be equal and, by their de�nition, integers. So instead ofadding them together and dividing by 2, we can take the linking number to beeither value.2.7 (Alex)Problem 3.2.7: Show that (a) the presence of two colors on a colorableknot diagram forces the presence of a third color, but (b) there is adiagram of the unlink of two components that can be colored withtwo colors, and one with three. Why is this the case? (c) ProveReidemeister moves don't change the colorability of links.a) This follows from the observation that if a knot has two colors, then theremust be a vertex where both colors are present. To color the knot, this vertexwould require the presence of a third color as well.b) Figure C.a can be colored with two colors, and Figure C.b requires three.c) The proof that works for knot diagrams works for diagrams of links as well.The reason for this is that nowhere in the proof is it assumed that the strandsa�ected by any reidemeister move ever join together.2.8 (Charlotte) 3.2.8 The Whitehead link is non-trivial.The unlink of two components is trivial and has a diagram which is colorablewith three colors. Since colorability is preserved under Reidemeister moves,every diagram of the unlink is colorable.To check for colorability, color arc 1 black. Choosing to make arcs 2 and 3black would force the whole diagram to be black which is not a valid coloring.Coloring arc 2 red forces arcs 3 and 4 to be blue. Arcs 3 and 1 force arc 5 to bered. Arc 6 would then have to be both blue and black, which is also not valid.The Whitehead link is not colorable, therefore it is not trivial.
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2.9 (Tim) If a knot is colorable there are many di�erent ways to color it. For in-stance arcs that were colored red can be changed to yellow, yellow arcs changedto blue, and blue arcs to red. The requirements of the de�nition of colorabilitywill still hold. There are six permutations of the set of three colors, so any col-oring yields a total of six colorings. For some knots there are more possibilities.(a) Show that the standard diagram for the trefoil knot has exactly six coloringsSince the standard diagram of the trefoil knot has only three arcs since all threearcs are the same we can pick one of them at random. We can choose any ofthe 3 colors to color this arc and we can pick two ways to color the second twoarcs. Therefore we have 3*2 choices of possible colorings which gives us the 6colorings we get from permuting the colors.(b)How many colorings does the square knot have?Since the square knot is the connected sum of two colorable knots clearly wecan either make one of the two knots all the same color, the color of the strandconnecting it to the other knot or we can color it in exactly the way we wouldif the strands connecting it to the other knot were simply linked together andwe just had a single knot. Since the �rst trefoil has 6 di�erent colorings and foreach coloring the strands linking it to the other trefoil are the same color, thecolor of the linking strand makes the other knot be colorable in only two waysthat aren't monochromatic. The total number of colorings is then 18.(c) The number of colorings of a knot projection depends only on the knot; thatis, all diagrams of a knot will have the same number of colorings. Outline aproof of this.



25two knot diagrams of the same knot di�er only by Reidemeister moves andbecause the coloring of all of the diagrams of the Reidemeister moves are com-pletely determined by the color of the incoming strands they cannot possiblychange the number of colorings of the knot as a whole.(d)Use the connected sum of n trefoils to show that there are an in�nite numberof distinct knots.The �rst knot in the chain can be colored freely giving 6 colorings for it andeach connected knot will have 3 possible colorings that will be consistent withthe color of the incoming strands. Thus for a connected sum of n trefoil knotsthere will be 18(n-1) total colorings for n greater than 1. Since the number ofcolorings is di�erent for each n then each n connected sum is a di�erent knot.Therefore we have found an in�nite class of di�erent knots.3.2 (Brian) For what values of p does the trefoil knot have a mod p solution? Hereis a labeling of a trefoil knot.

Figure 11: Labeling for a trefoil knot.To show which mod p solutions exist for the trefoil knot, we must calculate thedeterminate of the matrix given below minus one row and column.



26 ������ �1 2 �1�1 �1 22 �1 �1 ������Det(A) = ���� �1 2�1 �1 ���� = 1� (�2) = 3:The only mod p solution of this matrix is 3. So the trefoil knot can be labeledmod 3.3.4 (Onye) Question 3.3.4Suppose a knot is labelled mod(3), then the following relationship is correct.2x-y-z=0 mod(3) for any crossing point where x is the over crossing and y and zare the undercrossings. We had shown in a previous proof that this relationshipholds true for all colorable knots.If the labelling is therefore multiplied by 5, then the new relationship becomes10x-5y-5z=0 mod(15). This new relationship holds true for whatever values wechoose for x, y, and z.Suppose x=0, y=1, z=2. Then the original relationship implies that 0-1-2=0mod(3). This is a true statement. On the other hand, the new relationship willimply that 0-5-10=0 mod(15). This is also a true statement.We may therefore conclude that a knot labelled mod(3) could be multiplied byany prime number which will still preserve the colorability and labelling of theknot. This concludes the proof.3.5 (Miles) Problem: If p is 2, other di�culties come up. Explain why no knot canbe labeled mod 2.If we think of trying to color a knot it makes sense that we cannot color itmod two, as it would take at least three colors to color. However, if we look atthe crossing relationship that 2x � y � z = 0 we see that it also doesn't makesense. Since there are three variables and only two "colors" it must be that ei-ther x = y or y = z. If x = y then we have 2x�x�z = 0) x�z = 0) x = z,but then every arc would be labeled the same, and the condition that there needsto be at least two distinct labels wouldn't be satis�ed. Also, if y = z then wehave 2x � y � z = 0 ) 2x � 2z ) x = z. Again the condition of at least twolabels being distinct doesn't hold. Thus no knot can be labeled mod 2.4.1 (Tim) For each knot with 6 or fewer crossings �nd the associated matrix, andits determinant. In each case, for what p is there a mod p labeling.using the notation of the table in Appendix 1.31 has an n� n matrix.



270@ 2 �1 �1�1 2 �1�1 �1 2 1Athe determinant of 31 is 3 which implies a mod 3 labeling.41 has 4� 4 matrix 0BB@ 2 0 �1 �1�1 �1 2 0�1 2 0 �10 �1 �1 2 1CCAthe determinant of 41 is 5 which implies a mod 5 labeling.51 has a 5� 5 matrix 0BBBB@ 2 �1 0 0 �1�1 2 �1 0 00 �1 2 �1 00 0 �1 2 �1�1 0 0 �1 2
1CCCCAthe determinant of 51 is 5 which implies a mod 5 labeling.52 has a 5� 5 matrix 0BBBB@ 2 �1 �1 0 00 2 0 �1 �1�1 0 2 0 �1�1 �1 0 2 00 0 �1 �1 2
1CCCCAthe determinant of 52 is 7 which implies a mod 7 labeling.61 has a 6� 6 matrix 0BBBBBB@ 2 0 0 �1 �1 0�1 2 0 0 0 �10 0 2 0 �1 �1�1 �1 0 2 0 00 0 �1 �1 2 00 �1 �1 0 0 2
1CCCCCCAthe determinant of 61 is 9 which implies a mod 3 labeling.62 has a 6� 6 matrix.



28 0BBBBBB@ 2 0 0 �1 �1 0�1 2 0 0 0 �10 0 2 0 �1 �1�1 �1 0 2 0 00 �1 �1 0 2 00 0 0 �1 �1 2
1CCCCCCAthe Determinant of 62 is 11 which implies a mod 11 labeling.63 has a 6� 6 matrix.0BBBBBB@ 2 0 0 0 �1 �10 2 0 �1 �1 0�1 �1 2 0 0 0�1 0 0 2 0 �10 �1 �1 0 2 00 0 �1 �1 0 2
1CCCCCCAThe determinant of 63 is 13 which implies a mod 13 labeling.4.3 (Brian) Complete the �rst part of the proof that the determinate is the sameregardless of which row and column you remove.Since we are free to choose our labeling, we can set the last arc an = 0: Thisgives us a matrix where the last column does not matter so we can make all thelast values 0. When a column becomes 0, it gives us a nullity of 1. Then whena matrix has nullity 1 is row reduced, we get a row on the bottom that containsonly 0's. So we can remove both the row and column that are �lled with 0's.Because the labeling is arbitrary, we could have picked any arc to equal 0. Anarc is just a column in our matrix and so it does not matter which column getsremoved. Likewise, because we can do a row swap, it doesn't matter which rowgets removed. All we need to do before row reducing is swap one row for thelast row and it would make the new last row have 0's.4.4 (Charlotte) 3.4.4 The diagram of the unknot which has no crossings and thediagram of the unknot which has only one crossing do not have typical cor-responding matrices. An (n) � (n) matrix corresponds to a diagram with narcs, and the dete rminant of a knot is the absolute value of the associated(n� 1)� (n� 1) matrix. The problem with these two diagrams of the unknotis that, unlike any others, they have only one arc each, so the correspondingmatrix for either diagram is a 1� 1 matrix, and the matrix from which we aresupposed to �nd the determinant is a 0 � 0 matrix. We manage this problemby de�ning the determinant and nullity of a 0� 0 matrix to be 1. A nullity of1 means there is one solution. Since the determinant is not 0, the only existingsolution for the system of equations is trivial.



294.5 (Miles) Problem: Prove that the determinant of a knot is always odd.We know from that if a knot has a determinant that is divisible by p thena mod p solution exists that satis�es the crossing equation at each crossing.That is to say, if the determinant of a knot is divisible by p then the knot canbe labeled mod p.Assume the determinant of a knot is l, where l is an even integer. That meansthat l = 2k for some integer k. Since the determinant of the knot is 2k we knowthat a mod 2 solution exists (because 2k is de�nitely divisible by 2). However,we know this can't happen (from exercise 3.3.5). Thus we have a contradiction,and it must be that the determinant of a knot can't be even.4.6 (Alex) Problem 3.4.6: Show that if a knot has mod p rank n, then thenumber of mod p labelings is p(pn � 1).This follows from a basic understanding of what the rank of a knot signi�es.Let us look at any n�1�n�1 matrix of a knot with mod p rank n. Then, sincethe rank of the knot is n, this matrix has nullity n, meaning that its kernel hasrank n. This means that the space of vectors we can multiply by this matrixthat return 0 have dimension n.But this is the space we're interested in, because all labelings of this knot, whenwritten as a vector and multiplied by this matrix, should return 0. Notice thenthat the amount of elements in an n-dimensional mod p space is pn. We tossone of these elements out, namely the trivial solution of the 0 vector, becausealthough this vector multiplied by our matrix returns 0, it corresponds to alabeling of the knot using only either one or two colors, and so is an illegitimatesolution. So there are (pn � 1) solutions of the n� 1� n� 1 matrix.Now notice that to get down to the n� 1�n� 1 matrix, we �rst choose an arcand �x a labeling for it. As there are p labels, there are p ways to go from then� n matrix to the n� 1� n� 1 matrix.But if there are p ways to choose an n � 1 � n � 1 matrix, and each of thesematrices has (pn�1) solutions, then the total number of solutions of the matrix,or, equivalently, the total number of labeling of the knot, is p(pn � 1).5.2 (Charlotte) 3.5.2 Relate the value of the Alexander polynomial of a knot eval-uated at �1 to the determinant of the knot, de�ned in section 3.4.The �rst method we learned for labeling a knot, making a matrix and �ndingthe determinant was in section 3.4. In this matrix, as in the Alexander matrix,each row represents a crossing and each column represents an arc.In the �rst method, we put a 2 in every row, in the column of the over-crossingarc. In the Alexander matrix we put (1�t) in for every over-crossing. Evaluatingthis at t = �1 we get 1� (�1) = 2.In the �rst method, we labeled the two under-crossing arcs that approach andleave each crossing with the value �1. In the Alexander matrix, we label the



30 under-crossing arc that approaches the crossing with a �1, and the under-crossing arc that leaves the crossing with t. Evaluating this at t = �1 we get�1 for both under-crossing arcs, as we did in the �rst method.Finally, in both methods, we put 0 in the column of every arc that is notinvolved in the crossing represented by any given row. Since all entries of thematrix are the same by either method when we evaluate the entries of theAlexander matrix at t = �1, the value of the determinant will be the sameby either method. Therefore, since the Alexander polynomial of a knot K isthe determinant of the Alexander matrix for K, the value of the Alexanderpolynomial, when evaluated at t = �1 will be the same as the determinant we�nd by the method in section 3.4.5.4 (Miles)3.5.4 (Miles) Problem: Compute the polynomials of 818 and 924 to check they areidentical.Using the following labelings and orientation for the 818 knot:

If we set up the matrix for the knot using the diagram shown, and remove thelast row and column we get the determinant:��������������
�1 t 0 0 0 0 1� t0 t �1 0 0 0 01� t 0 �1 t 0 0 00 1� t 0 t �1 0 00 0 1� t 0 �1 t 00 0 0 1� t 0 t �10 0 0 0 1� t 0 �1

��������������



31This determinant equals (via TI-89): �t8 + 5t7 � 10t6 + 13t5 � 10t4 + 5t3 � t2Now use the following labelings and orientation for the 924 knot:

If we set up the matrix for the knot using the diagram shown, and remove thelast row and column we get the determinant:����������������
t �1 0 0 0 1� t 0 01� t �1 t 0 0 0 0 00 0 t �1 0 0 0 00 0 0 �1 t 0 1� t 00 1� t 0 0 t �1 0 00 0 0 1� t 0 �1 t 00 0 0 0 1� t 0 �1 t0 0 1� t 0 0 0 0 t

����������������Calculating this determinant we get: �t8 + 5t7 � 10t6 + 13t5 � 10t4 + 5t3 � t2Which is the exact same polynomial that we got for the 818 knot. Thus theAlexander polynomial fails to distinguish the 924 knot from the 818 knot.5.6 (Tim) Prove that a knot and its mirror image have the same Alexander poly-nomial.If the Knot has left and right reected then the right handed crossings willbecome left handed and vice versa but if we also reverse the orientation of theknot then the handedness of the crossings remains unchanged. If we label theknot arcs in the same way as before then we will get precisely the same matrixand so we must get the same determinant.5.7 (Alex) Problem 3.5.7: Show the Alexander Polynomial of a knot Kwith its orientation reversed is obtained from the polynomial of K by



32 substituting t�1 for t, multiplying by the appropriate power of t, andperhaps changing sign.This is equivalent to asking to show that the Alexander Polynomial is invariantunder changes of orientation. This can be seen in the following way. The e�ectof a change of orientation on the matrix from which the Alexander Polynomialis computed is to change all �1s to ts and vice versa. It is merely necessary,then, to show that this new matrix will have the same determinant as the old,up to changes of sign and powers of t.Consider the columns of this matrix. They will either: i) Have some amountof �1, t, and 1� t terms, iia) Will only have �1 or iib) will only have t terms,or iii) will have some �1 and t terms, but no 1 � t terms. Considering whathappens when �nding the determinant by expanding down the column in eachof these cases, along with some inductive reasoning, will show the determinantwill only change by possibly a negative and a power of t.Case i): Use row operations to add a row containing 1 � t in this column toall rows containing �1 or t in this column. The resulting column will look likeyour old column, and the determinant of your matrix has not been changed.This means that if before, the determinant of the matrix from expanding downthis column was�1[det(A1)+:::+det(An)]+t[det(B1)+:::+det(Bm)]+(1�t)[det(C1)+:::+det(Cp)];where Ai; Bi; Ci are the (n�1)� (n�1) matrices obtained by removing the rowand column of each respective �1, t, and 1� t term, then now your determinantis�1[det(A01)+:::+det(A0n)]+t[det(B01)+:::+det(B0m)]+(1�t)[det(C 01)+:::+det(C 0p)];where A0i; B0i; C 0i are obtained from Ai; Bi; Ci by replacing �1s with ts and vice-versa. Clearly, if we can demonstrate that something similar can be done withevery single column, then we have shown that the matrix of the reverse-orientedknot has the same determinant as the matrix of the original orientation of theknot. To show this, we simply have to examine the other two cases.Case ii): Simply expand down this column, no changes necessary. If before,expanding down this column gave determinant A(t), expanding down it nowwill either give t�1A0(t) in case iia) or will give tA0(t) in case iib). [Note thatA0(t) will di�er from A(t) by no more than a power of t and possibly a negativesign, by the same inductive reasoning used in i).] Since we are allowed tomultiply an Alexander polynomial by a power of t, this doesn't actually changethe polynomial.Case iii) If there is only one �1 and t term, simply switch the two rows con-taining these terms. This will result in the original column, and while a rowswap changes the sign of the determinant this isn't something we care about. If



33there is more than one �1 and t term, subtract a row with a �1 in this columnfrom every other row with a �1 in this column, and do the same for rows whichhave ts in this column. This does not change the derivative, and will result ina column with only one �1 and one t term, which was just discussed.This covers every case. We've now demonstrated that there is a way to ma-nipulate the matrix obtained from the reverse oriented knot in such a way sothat �nding the determinant by expanding down any column will yield the samedeterminant we had originally, ignoring changes of sign and powers of t. Thisshows that the Alexander polynomial obtained from the reverse oriented knotis identical to the one obtained from the originally oriented knot.
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Chapter 4
1.2 4.1.2 The surface in �gure 4.1 is a disk with two twisted bands attached. Thissurface is homeomorphic to the same surface with the bands untwisted. Thisis because there exists a one-to-one and onto map that cuts, untwists and reat-taches the bands in the �rst surface so that it looks, in 3-space, like the secondsurface. This mapping is continuous because points that are close to each otheron the �rst surface map to points that are close to each other on the secondsurface.Although the two surfaces are homeomorphic, they cannot be deformed intoeach other in 3-space. We show this by demonstrating that their boundaries aredi�erent. In exercise 4.1.1, we saw that the boundary of the surface with twistedbands is a trefoil knot. In the following diagram we see that the boundary ofthe surface with untwisted bands is the unknot.
2.1 (Miles)

4.2.1 (Miles) Problem: Use Theorem 3 to �nd the genus of the surface illustratedbelow (note: the boundaries for the knot have distinguished by coloring themdi�erent colors).
35
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Theorem 3: The genus of a connected orientable surface, which is formed by at-taching bands to a collection of disks, is given by: (2�disks+bands�boundarycomponents)=2Our surface as four disks, seven bands, and three boundary components. Thusthe genus = (2� 4 + 7� 3)=2 = 2=2 = 12.3 (Tim) Prove corollary 2.Corollary 2. if two connected orientable surfaces intersect in a single arc con-tained in each of their boundaries the genus of the union of the two surfaces isthe sum of the genus of each.the genus of a surface is g = 2���B2 Since we are connecting the surfaces alongthe boundary of each the union of the surfaces has a number of boundarycomponents B1 + B2 � 1 Since the boundary that we connect the two alongbecomes the same boundary in both surfaces and so would be counted twice.By theorem 1 in section 4.2 we have that the euler characteristic � of the unionof the two surfaces is the sum of both minus 1 since they meet along a single arc.Thus for the genus of the union of the two surfaces we have g = 2��1��2�B1�B2+22which is clearly the sum of the genuses of the two surfaces alone g1 =2��1�B12and g1 = 2��1�B122.4 Problem 4.2.4: Use Theorem 5 to prove that the only genus 0 surfacewith a single boundary component is the disk.



38 Theorem 5: Every connected surface with boundary is homeomorphic to a sur-face constructed by attaching bands to a disk.Theorem 3: If a connected orientable surface is formed by attaching bands to acollection of disks, the genus of the resulting surface is given byG = (2� disks+ bands� boundary)=2.Suppose there were a surface S with one boundary componenet, S not homeo-morphic to the disk, and G(S) = 0. By Thm 5, we know S is homemorphic toa disk with bands attached. Since S is not homemorphic to the disk, there is atleast one band attached. But if we substitute anything but now let us computethe genus of S using Thm 3. We �nd that G(S) = (2�1+r�1)=2 = r=2, wherer is the number of arcs. But then the genus of S is not 0 as we had assumed,so we have a contradictin.2.6 4.2.6 A punctured torus can be deformed into a disk with two bands attached.Begin by stretching the hole around the surface until the torus looks like thesubsurface in the picture.4.2.8 (Miles) Problem: Prove the genus of a surface is always nonnegative.We know (from theorem 3) that the genus of a knot can be found using thefollowing equation: g(K) = (2�disks+bands�boundary components)=2We also know (from theorem 5) that every connected surface with boundary ishomeomorphic to a surface constructed by attaching bands to a disk. So it issu�cient to conscider surfaces that consist of only a disk with bands attached.Let's �rst look at the simplest surface, just a disk. The genus of this surface is0.Now let's consider what happens when we add disks or bands to it. What wewant to do is look at the worst case scenarios, and make the genus as small aspossible (maybe even negative).Looking at the formula we see that this is doneby adding as many disks as possible, adding as few of bands as possible, andmaking as many boundary components as possible.Notice that anytime another disk is added at least one band is required (oth-erwise you would have more than one surface). Also notice that to add moreboundary components requires adding bands, or bands with disks. If it is donewith just bands, then the most boundary components can introduce is 1, butthis is cancelled out by the band added. So what if we increase the number ofboundary components by adding a collection of bands with disks? We run intothe same problems we had earlier. Consider adding boundary components byadding another disk with two bands running to the �rst disk. This will increasethe disk and boundary number by one, but also the band number by one. Thesame thing happens no matter how many disks and bands we may add to tryand increase the number of boundary components.
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40 Thus the biggest number that we can reduce the genus number by is 0. Itfollows that the smallest make the genus is 0.3.34.3.3 (Miles) Problem: Why does Seifert's algorithm always produce an orientablesurface?In short, the reason this occurs is because Seifert's algorithm produces a surfacewhich boundary is an orientable knot.Suppose Seifert's algorithm produced a nonorientable surface. We already knowthat the boundary of the surface created is a knot. However, we reach a con-tradiction because all knots are orientable and this would imply that the knotwasn't orientable. Thus it must be that the Seifert surface is in fact orientable.3.4 Problem 4.3.4: In applying Seifert's Algorithm, a collection of Seifertcircles is drawn. Express the genus of the resulting surface in termsof the number of these Seifert circles and the number of crossings inthe knot diagram.This is simply an elementary applicatino of Thm 3, shown above. Denotingthe number of seifert circles by s and the number of crossings by x, we haveG = (2 � s + x � 1)=2. This follows by noting that each seifert circle is adisk, each crossing is a band joining a disk to another disk, and the resultingsurface has one boundary component, namely the knot from which the surfacewas obtained.5.1 (Charlotte)4.5.1 (Charlotte) If K is nontrivial, there does not exist a knot J such that K#J istrivial. If K#J is trivial, it is the unknot, with genus 0. The additivity of knotgenus states that the genus of the connected sum of two knots is the sum of thegenus of the two knots. So for the connected sum of two knots to be 0, bothknots would have to be trivial.5.2 (Tim) Use the connected sum of 3 distinct knots to �nd an example of a knotwhich can be decomposed as a connected sum in two di�erent ways.Since the knot is made up of three knots it follows that you can break it upas a connected sum of one prime knot and the other two together or you canbreak it up with that prime knot connected to one of the other two and a thirdprime knot left out. Of course the above only holds if we are dealing with 3di�erent prime knots since otherwise the knots we are separating into would beindistinguishable.5.5 4.5.5: Use the genus to prove that there are an in�nite number ofdistinct knots. As a harder problem, can you �nd an in�nite numberof prime knots?



41Two knots are distinct if they have di�erent genus. But we can take a knot Kwith genus g and construct K�K with genus 2g. Then K�K is distinct fromK. We can do this an in�nite amount of times, �nding an in�nite number ofdistinct knots K �K � :::�K �K.Will think about the prime bit some more.
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Chapter 51.2 (Tim) Show that S6 is not commutative.Two elements of S6 are (1, 3, 4) and (2, 4, 6) just quickly checking we get (1,2, 4)(2, 4, 6) = (1, 4)(2, 6) (2, 4, 6)(1, 2, 4) = (1, 2, 4)(4, 6)so clearly (1, 3, 4) and (2, 4, 6) do not permute and so S6 is not commutative.
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445.1.3 (Miles)(a) Verify that the inverse to (1,4,2,5)(3,6) is (1,5,2,4)(3,6)To do this we simply look at the product of these permutations and see if we getthe identity permutation. Consider the product (1,4,2,5)(3,6)(1,5,2,4)(3,6). Inthe �rst cycle 1 goes to 4, then in the third 4 goes to 1. Thus 1 goes to 1. Notice2 goes to 5, then �ve goes to 2. If you do this you will get the permutation(1)(2)(3)(4)(5)(6), which is the identity permutation.(b)Find the inverses to (1,3,6,4,5,2), (1,6,4)(2,5,3), and (1,2,3,4)(3,4,2)(3,5,6,1).The inverse to (1,3,6,4,5,2) is (2,5,4,6,3,1), the inverse to (1,6,4)(2,5,3) is (4,6,1)(3,5,2),and the inverse to (1,2,3,4)(3,4,2)(3,5,6,1) is (6,5,1)(3,4,2). Each of these can beveri�ed why taking the product of the permutation and the permutation thatis inverse to it and noticing that that identity is the result.(c) In general how does one write down the inverse of a permutation givenin cyclic notation?First write the permutation down as a product cycles such that no two of thecycles will have an element in common (we know we can do this by theorem 1).The inverse of the permutation is simply the set of cycles that were just found,but with all the elements in each cycle written in reverse order.(d) Let g be the permutation (1,6,3)(2,4,5). Compute g�1(2; 3; 4)g, and g�1(1; 3)(4; 5; 2; 6)g.What is a short cut for computing g�1fg in general?Doing some simple computation we see that g�1(2; 3; 4)g is the permutation(1,5,4)(2)(3)(6), and also g�1(1; 3)(4; 5; 2; 6)g is the permutation (1)(2,4,6,3,5).I don't know if this is what they were looking for, but the following is a shortcut(kind of). Conscider g�1(2; 3; 4)g, or (3,6,1)(5,4,2)(2,3,4)(1,6,3)(2,4,5). Insteadof working with this huge mess, we can just look at g�1f , and when we get to thecycles in f just work backwards over g�61. Looking at only (3,6,1)(5,4,2)(2,3,4)we see that 1 goes to 3, then three goes to 4, then 4 goes to 5. Thus 1 goesto 5. Now looking at 5: 5 goes to 4, then 4 goes to 2, and then 2 goes to 4.Therefore 5 goes to 4. Now look at 4: 4 goes to 2, then 2 goes to 3, then 3 goesto 1. So 4 goes to 1.Then the �rst cycle in the permutation is (1,5,4). This canbe continued to get the rest.1.4 (Charlotte)5.1.4 (Charlotte) It is not possible in S8 for the product of two 4-cycles to be an8-cycle.Either the two 4-cycles are disjoint or they have at least one common element.If they are disjoint then their product is the same two disjoint 4-cycles. If theyhave one element in common then their product can have at most 7 distinctelements. If they have more than one element in common their product willhave fewer than 7 distinct elements, so it is not possible for an 8-cycle to be theproduct of two 4-cycles.



451.5 Problem 5.1.5: In Sn, a) what is the order of (1; 3; 4; 6; 2)? b) Verifythat the order of (1; 3; 5)(2; 4) is 6. c) What is the largest order of anelement in S7? S10? S20?a). (1; 3; 4; 6; 2) is a 5-cycle and so has order 5.b). (1; 3; 5) and (2; 4) are disjoint. (1; 3; 5) has order 3, and (2; 4) has order 2.So any n with 2jn, 3jn will result in [(1; 3; 5)(2; 4)]n = e. The smallest such n is6.c). The largest order of S7 is 12, which results from a 3-cycle and a 4-cyclepermutation. In S10 the largest order is 30, which results from a 5-cycle, 3-cycle,and 2-cycle. In S20 the largest order is 420, obtained from a 7-cycle, 5-cycle,3-cycle, and 4-cycle.5.1.7 (Charlotte) a) Check that the 5-cycle (1,2,3,4,5) is equal to the product oftranspositions, (1,2)(1,3)(1,4)(1,5).It is straightforward to check that (1,2)(1,3)(1,4)(1,5)=(1,2,3,4,5). In eachtransposition (1,n), n goes to 1 and in the next transposition 1 goes to n+1, sothe result is (1,2,3,4,5).b) Write (1,5,3,4) as a product of three transpositions.(1,5,3,4)=(1,4)(4,5)(4,3)Write (1,2,4)(3,5,6) as a product of transpositions.(1; 2; 4)(3; 5; 6) = (1; 2)(1; 4)(3; 5)(3; 6)c) Argue that every permutation is the product of transpositions, and morespeci�cally is a product of transpositions of the form (1,n).Given a set of elements (a1; a2; a3; :::), some element ai can be moved to anyposition in the permutation of the set by a series of transpositions. Similarly,each element of the set can be moved to a di�erent position by moving it oneposition at a time, trading places with a neighboring element each time. Bysuch a series of transpositions we can make any permutation of the set. Thus,all permutations are the product of transpositions.Show that every permutation is the product of transpositions of the form (1; n).We know that the set of transpositions generates SK, so now we need to showthat every transposition can be written as a product of transpositions of theform (1,n).The transposition (a,b) may be written as the product of transpositions (1,a)(1,b)(1,a).So from transpositions of the form (1,n) we can build transpositions from whichwe can build any permutation.
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1      2      3      4      5

1      2      3      4      5

1      2      3      4      5

1      2      3      4      5d) Show that every permutation can be written as the product of transpositionstaken from the set f(1; 2); (2; 3); (3; 4); (4; 5); :::; (n� 1; n)g. To show this we willconsider an example. Write (1,3,5) as the product of transpositions. To �nda solution we draw a diagram showing each element from 1 to 5 and where itis sent by the permutation. The �rst row of numbers represents the originalelements. The second row is the image under the permutation. The lines matcheach element to its image under the permutation.The second diagram is drawn to show more clearly that each move is simplymade up of transpositions. Each crossing represents a transposition of twoelements. The six transpositions (1,2),(4,5),(3,4),(2,3),(1,2) and (4,5) occur.The result of these transpositions is the desired permutation. We can drawsuch a diagram for any permutation, thus showing that any permutation canbe written as a product of transpositions.



475.1.9 (Miles)(a) Show that the set of 4-cycles generates S4.We know that the symmetric group can be generated by the set of transposi-tions, thus if we can �nd a way to write any transposition as the product of4-cycles then we know that the set of 4-cycles will generate S4.Let A be a set in S4, with Ai an element in the set. Suppose you want totranspose the i = m element with the i = n element. Then let B be the setwith Bi = Ai if i 6= m;n. If i = m let Bm = An, likewise if i = n let Bn = Am.Then AB is the transposition of the i = m element of A with the i = n elementof A.(b) Show that the 4 cycles (1,2,3,4) and (1,2,4,3) generate S4.Notice that:(1; 2) = (1; 2; 3; 4)(1; 2; 4; 3)2(1; 2; 3; 4)2(1; 2; 4; 3)(1; 3) = (1; 2; 3; 4)(1; 2; 4; 3)2(1; 4) = (1; 2; 3; 4)(1; 2; 4; 3)2(1; 2; 3; 4)(1; 2; 4; 3)(2; 3) = (1; 2; 3; 4)2(1; 2; 4; 3)(2; 4) = (1; 2; 3; 4)(1; 2; 4; 3)2(1; 2; 3; 4)2(3; 4) = (1; 2; 3; 4)(1; 2; 4; 3)Thus (1,2,3,4) and (1,2,4,3) generate S4.2.1 (Tim) Check that the consistency condition is satis�ed at all the crossings inthe labeled knot diagrams illustrated by �gures 5.2 and 5.3For the labelings in 5.2 we have the conditions(1, 3)(1, 2)(1, 3) = (2, 3) (2, 3)(1, 3)(2, 3) = (1, 2) (1, 2)(2, 3)(1, 2) = (1, 3)(4, 3, 2, 1)(1, 3, 2, 4)(1, 2, 3, 4) = (1, 2, 4, 3) (4, 2, 3, 1)(1, 2, 4, 3)(1, 3, 2, 4)= (1, 2, 3, 4) (3, 4, 2, 1)(1, 2, 3, 4)(1, 2, 4, 3) = (1, 3, 2, 4)all of which holdand the conditions obtained from 5.3 are(3, 2, 1)(5, 4)(3, 5)(1, 2, 4)(4, 5)(1, 2, 3) = (2, 4)(1, 5, 3) (3, 5, 1)(4, 2)(4, 5)(1,2, 3)(2, 4)(1, 5, 3) = (1, 2)(3, 4, 5) (5, 4, 3)(2, 1)(2, 4)(1, 5, 3)(1, 2)(3, 4, 5) =(1, 3)(2, 4, 5) (5, 4, 2)(3, 1)(1, 2)(3, 4, 5)(1, 3)(2, 4, 5) = (3, 5)(1, 2, 4) (4, 2,1)(5, 3)(1, 3)(2, 4, 5)(3, 5)(1, 2, 4) = (4, 5)(1, 2, 3)which also all hold so the consistency condition is satis�ed at the crossings.2.2 Problem 5.2.2: In �gure 5.5, two of the labelings satisfy the consis-tency condition while one does not. Find the inconsisten labeling.Figure b is inconsistent. The bottom intersection, read o� the diagram, im-plies (12)(345)(35)(124)(543)(12) = (13)(245). This equation actually equals(152)(34), however.
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Figure B

(13)(245)

(35)(124)

(12)(345)

(13)(12) (23)

(23)

(23)

(13)

(12)

Figure A

5.2.4 (Charlotte) Find a labeling of the (3,3,3)-pretzel knot illustrated in Figure 5.7using transpositions from S4. Your labeling should have every transpositionappear, so it is clear that the labels generate the group.5.2.6 (Miles) Problem: Show that in some of the previous examples the labeling be-comes inconsistent if the orientation of the knot is reversed. Show, however,that is the orientation of the knot is reversed and each label is replaced with itsinverse, then the labeling will again become consistent.Conscider the diagram in Figure 5.5. Here it is with the orientation reversed:
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(1,2)

(1,3) (3,2)

(1,3)

(3,2)(1,3)

     (2,3)
(1,2)

(1,2)

Looking at the following vertices we see that the labelings are not consistent.1: (1; 2; 3)(3; 4; 5)(3; 2; 1) = (1)(2; 4; 5)(3) 6= (1; 4; 5)2: (1; 4; 5)(1; 2; 3)(5; 4; 1) = (1)(2; 3; 5)(4) 6= (3; 4; 2)3: (3; 4; 2)(1; 4; 5)(2; 4; 3) = (1; 3; 5)(2)(4) 6= (1; 2; 5)4: (1; 2; 5)(3; 4; 2)(5; 2; 1) = (1; 3; 4)(2)(5) 6= (3; 4; 5)5: (3; 4; 5)(1; 2; 5)(5; 4; 3) = (1; 2; 4)(3)(5) 6= (1; 2; 3)Now if we also replace each label with its inverse we get the following equa-tions at each crossing:1: (3; 2; 1)(5; 4; 3)(1; 2; 3) = (1; 5; 4)(2)(3) = (5; 4; 1)2: (5; 4; 1)(3; 2; 1)(1; 4; 5) = (1)(2; 4; 3)(5) = (2; 4; 3)3: (2; 4; 3)(5; 4; 1)(3; 4; 2) = (1; 5; 2)(3)(4) = (5; 2; 1)4: (5; 2; 1)(2; 4; 3)(1; 2; 5) = (1)(2)(3; 5; 4) = (5; 4; 3)5: (5; 4; 3)(5; 2; 1)(3; 4; 5) = (1; 3; 2)(4)(5) = (3; 2; 1)Thus when the orientation was reversed and the labelings were replaced withtheir inverses the labelings became consistent.3.2 Problem 5.3.2: Prove it is impossible to label the trefoil with trans-



50 positions from S4.The trefoil has only three arcs. Once the labelings on two of these arcs aredetermined, the third is forced. But to be consistent, this third labeling willhave to have the form (xy), where the �rst labeling takes the form (xa) and thesecond takes the form (yb). But then the third labeling is generated by the �rsttwo, and it takes more than two transpositions to generate S4.5.3.4 (Charlotte) Check the claims about labelings for diagrams 61 and 946.Diagram 61 cannot be labeled with transpositions from S4 If we label arcs a andb with the same labeling, for example both (1,2), all arcs in the diagram areforced to be labeled (1,2). If the labels for a and b overlap, such as (1,2) and(2,3) this forces a labeling in transpositions from S3. If the labels for a and bare disjoint we reach a contradiction. For example, if a is (1,2) and b is (3,4),we will �nd that arc d must be both (1,2) and (3,4). Therefore, 61 cannot belabeled with transpositions from S4.Diagram 946 can be labeled with transpositions from S4 as follows.Diagrams 61 and 946 can be labeled with 4-cycles from S4 as follows.5.4.1 (Miles) Problem: Why is xyx�1 = yx�1zxy�1xyx�1z�1xy�1 equivalent toyx�1zxy�1x�1yx�1z�1xy�1xyx�1 = 1?We know that ((yx�1zxy�1)x(yx�1z�1xy�1)) has an inverse, in particular:(yx�1zxy�1)x�1(yx�1z�1xy�1).Multiplying both sides of the �rst equation on the left by this we get: yx�1zxy�1x�1yx�1z�1xy�1xyx�1= yx�1zxy�1x�1yx�1z�1xy�1yx�1zxy�1xyx�1z�1xy�1 = 1) yx�1zxy�1x�1yx�1z�1xy�1xyx�1 = 1Questions:Can we �nd the cases that causes a certain invariant to not be able to distin-guish two knots? Put another way, can we combine a couple of invariants weknow to obtain a true invariant?Do any of the invariants we've covered so far apply to linking number?Is there a "simplest" diagram for a knot? How about a link?Can prove what the least number of crossings in a diagram (equivalent to someknot) is?
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(1,2,3,4)

(1,2,4,3)

(1,2,4,3)

(1,4,2,3)
(1,4,2,3)

((1,3,2,4)

(1,3,4,2)

(1,4,3,2)

(1,2,3,4)

(1,2)

(2,3)

(1,3)

(2,3)
(2,3)

(1,2)

(1,3)

(2,3)

(2,3)
(1,3)

A

B
 C

D

E

F

(1,2,3,4) (1,2,4,3)

(1,4,2,3)

((1,3,2,4)

(1,3,4,2)

(1,4,3,2)
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Chapter 61.2 Problem 6.1.2: Find the Seifert matrix of the knot in �gure 6.1.6.1.4 (Charlotte) Find the Seifert matrix corresponding to (p,q,r)-pretzel knots withp, q and r odd.As in �gure 4.8 in the text (page 67), a pretzel knot can be deformed to looklike a disk with bands attached by pushing the boundary down through eachtwist of the center band, and leaving a space at its base between the two newlyformed sides of the center band. Call the bands p, q and r, where the nameindicates the number of twists on the band. In the new surface, we have onlytwo bands which we will call P and R. It will be useful to refer to the twiststhat were originally on p as Pp and the twists that were originally part of q butare now part of P as Pq. We will do the same for R. What was formerly q isnow made up of the q twists of Pq and q twists of Rq.Smoothing the bands in the center will either increase or decrease the numberof twists on p and r, depending on the direction of the twists. (We will describethe case of q and p only, realizing that the same is true for q and r.) If p andq are twisted in the same direction, then for every twist we push o� of Pq weautomatically loose a twist on Pp. That is, each twist on Pq undoes a twist onPp.If p and q are twisted in opposite directions, then for every twist we push o�of Pq we will add a twist to Pp. In this case, each twist on Pq simply becomesinstead a twist on Pp.We said that the number of twists on Pq and Rq is q. So now we can say that thenumber of twists on P is the number of twists on Pp plus the number of twists onPq, or simply p+ q. Similarly, the number of twists on R is r+ q. Remember todesignate one direction of twists as negative and the other direction as positive.Because p, q and r are odd, P and R will necessarily be even. This ensures thatour Seifert surface will be orientable. We draw our surface in the standard waywith curves P, P*, R and R*.Since P is counted in half twists, the linking number of P and P* is P2 . Similarly,the linking number of R and R* is R2 . These are integers since P and R areeven.For q odd, the linking number of P and R* will be either q � 1 or q � 2. Fromlooking at �gure 4.8 you can see that this depends on whether P is above or53



54 below R at the top of band q. For the purpose of the matrix we are trying todescribe, we will say we have arranged the knot so that P is above R at the top,which will mean that the linking number of P and R* is q � 1 and the linkingnumber of R and P* is q � 2.This gives us the Seifert matrix:� P2 q � 1q � 2 R2 �6.1.6 (Miles) Problem: What would be the e�ect of changing the orientation of theSeifert surface on the Seifert matrix?We knot that the (i; j) entry in the Seifert matrix is given by lk(xi; xj�). Clearlythe magnitude of the linking number is going to stay the same. What is goingto change is the sign. If a crossing is left handed and the orientation is reversedit will become right hand and vice versa. This corresponds to a changing sign.Thus thus if a Seifert matrix is computed for a surface and then computed againwith the same surface with the orientation reversed, the matrices will be thesame, except the signs on each entry will be opposite.6.2.3 (Charlotte) Check the calculation of the determinant that gives the Alexanderpolynomial of the knot in Figure 6.1.The matrix associated with the knot in Figure 6.1 is V � tV t where V is theSeifert matrix of the knot:0BB@ 2� 2t 1 0 0�t �5 + 5t 1� t 00 1� t 2� 2t �1 + 2t0 0 �2 + t �2 + 2t 1CCACalculating the determinant by expanding on the �rst column we get(2� 2t)[(�5 + 5t)(2� 2t)(�2 + 2t)�[(�5 + 5t)(�1 + 2t)(�2 + t) + (1� t)(1� t)(�2 + 2t)]]+t[(2� 2t)(�2 + 2t)� (�1 + 2t)(�2 + t)]= 64t4 � 272t3 + 417t2 � 272t+ 64which is the Alexander Polynomial of the knot.6.2.5 (Miles) Problem: Use the result of exercise 6.1.7 to show that theAlexander polynomial of the conneted sum of knots is the product of theirindividual Alexander polynomials.



55Result of exercise 6.1.7: Let MJ and MK me Seifert matrices for knots J andK (respectively). Then the Seifert matrix for J#K is the matrix� MJ 00 MK �The Alexander polynomial of J#K is then equal to���� MJ � tMJ 00 MK � tMK ����Which is equal to det(MJ � tMJT )det(MK � tMKT ) which equals theAlexander polynomial of J multiplied by the Alexander polynomial of K.
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Questions
BrianFor this I think an interesting one would be the one the book mentions: What is theleast number of Reidemeister moves that is required to transition the knot for Prob.3.1.2 into the unknot and can we prove that this is the least number required. I seea method of 5 moves so far.Question:How many knots in the Appendix can taken from 1 link to 2 links oreven n links? Of these new links, which ones are oriented equivalence?Question:By cutting a knot at a point A, can you then make 2 more crossings andreconnect that knot and get all knots with +2 crossings?Question Is there a 'pedigree tree' such that by creating one knot you can get to onlysome of the higher crossing knots?Question If there is a tree does this help distinguish more knots apart?Question Can you get 2N distinct orienations in other ways? Does making a chainof n orientable equivalent knots such that it is not symmetric about the middle linkgive us an upper bound?Question: Are there knots that have a mod p solution and a mod q solution.?MilesQuestions:Why are coloring numbers restricted to just the odd primes?If two knots can both labeled mod p will they share any other characteristics?If two knots are added together how will its coloring number relate to the two knotscoloring numbers?To used the equation 2x�y� z = 0 (mod p) to �nd an invariant for knots. Could weperhaps use some other equation that would give us a stronger invariant? Questions:1. Is there a easier way to check that a certain set generates a group?2. How do you know if a set that generates a group is the smallest set (least numberof elements) that generates that set?3. In the previous chapter we learned that we could write down all possible surfaces(up to a homeomorphism). Can we do the same sort of thing with groups?Is it necessarily the case that all surfaces which have that same knot K as theirboundary are homeomorphic to each other?57



58Is the least sticks question for a knot essentially the same as the least triangles for asurface (with the knot as its boundary) question?Is there a way to de�ne a prime knot such that prime factorizations is unique, and atwo prime knots determine a single knot?Can we �nd how many diagrams there are with n crossings using stereotypical pro-jection?Can we show there are in�nitely many distinct knots?Can any diagram of the unknot be all the way unknotted using only the type 2 Rei-demeister move?Can a knot ever be labeled (the way we de�ned it in class) with an abelian group? Ifso, what are some examples?Can we �nd the cases that causes a certain invariant to not be able to distinguish twoknots? Put another way, can we combine a couple of invariants we know to obtain atrue invariant?Do any of the invariants we've covered so far apply to linking number?Is there a "simplest" diagram for a knot? How about a link?Can prove what the least number of crossings in a diagram (equivalent to some knot)is?Tim1. Are there arbitrarily many di�erent knot invariants?2. Would the existence of an algorithm to distinguish any two knots in a �nitenumber of steps imply the existence of a �nite number of invariants which woulddistinguish any two knots?3. What is a simple way to enumerate the set of all knots allowing for duplicateknots?4. What is the simplest algorithm to generate all possible knots without duplica-tion. (does such an algorithm exist?)5. The torus knots cover some portion of the set of all knots as do the (p, q, r)pretzel knots. Can you construct a �nite set of simple classes of knots like these thatwould cover the set of all knots? (these classes of knots would be allowed to overlap)6. Does the set of all pretzel knots of any number of strands cover the set of allknots?7. Connecting the strands of a braid will give you some subclass of knots whatknots are not covered by this class of knots?8. Does the class of all knots which are generated by connecting the strands of abraid cover the set of all n stranded pretzel knots?9. Is there a closed form for the number of knots which can be drawn with aminimum number of crossings n. (is it related to the number of partitions of n?)10. A knot diagram creates a series of distinct regions cut o� from one anotherby the arcs of the diagram. Clearly every knot diagram must have at least 2 regionsand every non trivial diagram must have at least 5 regions. If we take into accountthe number of crossings on the boundary of each region can we use this information



59to determine what the minimum possible number of crossings a knot with a diagramwith these characteristics could have?11. Traversing the regions of a knot diagram moving around them in a counterclockwise order and noting the order of the crossings gives a permutation of thecrossings. Is there some natural way to translate cycles generated like this into a Snlabeling of the knot?12. Does the Alexander polynomial su�ce to distinguish all alternating knots(knots which go from over crossing to undercrossing to over crossing to...)13. The alternating knots can all be drawn such that every crossing is on theoutermost region of the knot. Is there any other class of knots which can be drawnwith all points exterior?14. Consider a knot to be constructed of a material that has a certain exibilitybut which wants locally to be a straight line segment. This puts a certain tension intothe knot. Such a knot will have a minimum energy con�guration where the amountof curvature is least in some sense. Given a knot made of such an elastic materialin any starting con�guration will the knot always "uncoil" into this minimum energycon�guration? (frictionless environment of course and the knot would be consideredto have a �xed total length it cannot stretch) Can such a knot have more than onepossible minimum energy con�guration?14. What is the set of groups which are the fundamental groups of some knot.15. Treating knots as closed polygonal curves with integer vertices how manydistinct knots can �t into a cube of side n? (for that matter how many di�erentrepresentations are there)16. Knots can be represented as a language ( a language is a set of strings anda string is just a series of symbols) Given some way of representing a knot withsymbols the language of a knot would be the set of all possible representations usingthat system of representation which represent equivalent knots. The language of aknot with a particular representation system is then a knot invariant. Is it possible tohave both a means of representing a knot which unambiguously determines the knotand generates a language of all possible representations which is �nite?17. What is the computational equivalent of the operation of �nding knot equiva-lence? In other words what computational problems can we map onto the question ofequivalence of knots. One such computational framework might be to take a proposi-tion and translate it into two knots (or rather two knot representations) in such a waythat the proposition is true if and only if the two knots are equivalent. Speci�callycan we do this with the operation of addition? so can we associate knots in such away to the proposition a + b = c so that the question can be answered by equivalenceof knots.18. Where on the Chomsky hierarchy is the language of knots?19. The language of at least some subclass of knot representations is decidable, isit possible to �nd a class of knot representations such that the language of all knotsin that representation is a context sensitive language or a context free language oreven a regular language?20. How many essentially di�erent diagrams of a knot are there which share thesame number of crossings? Is the set of minimum crossing diagrams of a knot di�erent



60from the set of minimum arc diagrams of a knot? If so in what cases?Onye1. When are two diagrams of the same knot described as isotopic?2. Why are knots not colorable mod 2?3. When do two diagrams represent the same link?4. What is an alternating pretzel-knot?5. What is knot addition and how does it work?6. What is the mirror image of the �gure 8 knot?7. Does a non-trivial knot in R3 necessarily have four collinear points?8. Are there any such things as ideal knots?9. When is a knot or link described as prime?10. What is the unknotting number for the �gure 8 knot?11. What does the term "family of knots" mean?12. Are there links that are colorable mod 2?13. Is there only a unique way by which a knot or link may be colorable?


