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1. Day 1: Classical Lambda and Adams operations on K0

What follows is an expanded version of my talk on Monday, June 1, 2019. I’ve
added details, additional examples, and some exercises.

A good reference for the material in this seciton (and much, much more) is the
book “Riemann-Roch Algebra”, by Fulton and Lang.

1.1. Definition of K0. For a (commutative noetherian) ring R, let P(R) denote
the category of finitely generated projective R-modules.

Definition 1.1. K0(R) is the abelian group generated by classes [P ] of objects of
P(R) with relations coming from short exact sequences of such. That is, for each
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short exact sequence 0→ P ′ → P → P ′′ → 0 in P(R), we declare

[P ] = [P ′] + [P ′′].

Remark 1.2. Since each such short exact sequence is split exact, one may equiva-
lently define K0(R) as the group completion of the additive monoid of isomorphisms
classes in P(R) (with addition given by direct sum).

Since [P1] + [P2] = [P1 ⊕ P2] holds in K0(R), every element of K0(R) can be
written as a formal difference [P ]− [P ′] with P, P ′ ∈ P(R).

More generally, when X is a noetherian scheme, K0(X) is the abelian group
generated by classes of locally free coherent sheaves on X, modulo relations coming
from short exact sequences of such. Nearly everything we say in this section about
K0 of commutative rings generalizes to schemes, but we will sometimes leave such
generalizations unspoken.

For any abelian group A we have a bijection of sets

HomAb(K0(R), A)) ∼= {additive functions ρ : P(R)→ A}

where “additive” means that ρ assigns an element of A to each object of P in such
a whay that ρ(P ) = ρ(P ′) + ρ(P ′′) holds whenever there is a short exact sequence
0→ P ′ → P → P ′′ → 0.

Example 1.3. If Spec(R) is connected, each projective R-module P has a well-
defined rank, written rank(P ) ∈ Z, which may be defined as the rank of the free
module obtained by localizing at any point of Spec(R). The rank function is addi-
tive on short exact seqeunce and hence indcues a homomorphism

rank : K0(R)→ Z

that sends a typical element [P1]− [P2] of K0(R) to rank(P1)− rank(P2).
If R is a local ring, then the rank function induces an isomorphism K0(R) ∼= Z,

since every projective module is free in this case.
If R is a Dedekind domain (a regular domain of dimension 1), then the kernel of

rank(R)→ Z is isomorphic to the divisor class group of R (and also to the Picard
group of R). For other rings, the kernel is more difficult to describe.

The assignment R 7→ K0(R) is functorial: Given a ring homomorhism g : R→ S,
we define the map

g∗ : K0(R)→ K0(S)

to be induced by extension of scalars: given P ∈ P(R), we have g∗([P ]) = [P ⊗RS].
The map g∗ is well-defined since the function P 7→ [P ⊗R S] is additive on short
exact sequences.

The abelian group K0(R) becomes a commuative ring under the operation in-
duced by tensor poduct:

[P ] · [P ′] := [P ⊗R P ′].
This is a well-defined operation since for a fixed P , the mapping P ′ 7→ [P ⊗R P ′] is
additive on short exact sequences, and similarly for P 7→ [P ⊗R P ′] for each fixed
P ′. The idenity element is [R]. Moreover, this structure is natural, so that K0(−)
is a covariant fucntor from commutative rings to commutative rings.

The same holds on the level of schemes, but the variance is opposite: K0(−) is
a contravariant functor from noetheriean schemes to commutative rings.
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1.2. Lambda operations. There is important additional sctructure on K0(R)
that arises from the exterior powers. For P ∈ P(R), let ΛkR(P ) denote the k-th
exterior power:

ΛkR(P ) =

k︷ ︸︸ ︷
P ⊗R · · · ⊗R P

L
where L is the sub-module generated by

e1 ⊗ · · · ⊗ ek − sign(σ)eσ(1) ⊗ · · · ⊗ eσ(k)
for each permuation σ ∈ Sk.

Since the k-th exterior power of a free module of rank r is free of rank
(
r
k

)
, it

follows that ΛkR(P ) is a projective bundle of rank equal to
(
rank(P )

k

)
. In particular,

it is the trivial bundle for k > rank(P ).
It is important to notice that the exterior power functor is not additive on short

exact sequences. However, there is a replacement for this lack of additivity: given
a short exact sequence

(1.4) 0→ P ′
ι−→ P

π−→ P ′′ → 0

there is a filtration
0 = F−1 ⊆ F0 ⊆ · · · ⊆ Fk = ΛkR(P )

such that Fi/Fi−1 is isomorphic to Λk−i(P ′)⊗RΛi(P ′′), for each 0 ≤ i ≤ k. Namely,
define Fi as the image of the map (P ′)⊗k−i ⊗R P⊗i → ΛkP defined by

x′1 ⊗ · · · ⊗ x′k−i ⊗ y1 ⊗ · · · ⊗ yi 7→ ι(x′1) ∧ · · · ∧ ι(x′k−i) ∧ y1 ∧ · · · ∧ yi.
For example, when k = 2, we have the filtration

0 ⊆ Λ2(P ′) ⊆ F1 ⊆ Λ2(P )

with

F1 = im(P ′ ⊗ P x′⊗y 7→ι(x′)∧y−−−−−−−−−→ Λ2
R(P ))

The isomrphism F1/Λ
2(P ′)

∼=−→ P ′ ⊗ P ′′ is induced from the surjection id⊗π :
P ′⊗R P → P ′⊗R P ′′, and the isomorphism Λ2(P )/F1

∼= Λ2(P ′′) is induced by the
surjection Λ2(π) : Λ2(P ) � Λ2(P ′′).

It follows that

(1.5) [Λk(P )] =

k∑
i=0

[Λk−i(P ′)] · [Λi(P ′′)]

holds in K0(R). For example

[Λ2(P )] = [Λ2(P ′)] + [P ′][P ′′] + [Λ2(P ′′)]

Using this we are able to prove:

Lemma 1.6. For each commutative ring R, there are functions λk : K0(R) →
K0(R), for k ≥ 0, uniquely deteremined by the following properties:

• For each P ∈ P(R) and k, we have

λk([P ]) = [ΛkR(P )].

• For all a, β ∈ K0(R) and all k, we have

(1.7) λk(α+ β) =

k∑
i=0

λi(α)λk−i(β).
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Moreover, these operators are natural for ring maps.

Proof. Let t be a formal parameter, form the ring K0(R)[[t]] of power series with
coefficients in the commutative ring K0(R), and for any P ∈ P(R), define

λt(P ) :=
∑
k

[Λk(P )]tk ∈ K0(R)[[t]].

(The sum is actually finite since Λk(P ) = 0 for k > rank(P ).) Since the constant
term of λt(P ) is 1, λr(P ) belongs to the group of units of K0(R)[[t]]. For each short
exact sequence (1.4), it follows from (1.12) that

λt(P ) = λt(P
′) · λt(P ′′);

that is, λt is additive on short exact sequences, provided we interpret it as taking
valus in the multiplicative abelian group K0(R)[[t]]×. Therefore, by the universal
mapping property of the Grothendieck group, λt induces a homomorphism

λt : K0(R)→ K0(R)[[t]]×

of abelian groups. Finally, we define

λk : K0(R)→ K0(R)

to be the compotition of λt with the map K0(R)[[t]]× → K0(R) sending a power
series to the coefficient of tk. Equation (1.7) follows.

The uniqueness property is seen to hold by induction on k.
The naturality assertion follows from the fact that given a ring map g : R→ S,

we have an isomorphism ΛkR(P )⊗P S ∼= ΛkS(P ⊗R S). �

The operator λ0 is the constant function with value 1 = [R] ∈ K0(R), and λ1 is
the identity map. The operator λk is not a homomorphism of abelian groups for
k 6= 1.

Example 1.8. What is λ2(−[P ])? We have 0 = λ2([P ]+(−[P ])) = λ2([P ])λ0(−[P ])+
λ1([P ])λ1(−[P ]) + λ0([P ])λ2(−[P ]) = [Λ2[P ]]− [P ⊗ P ] + λ2(−[P ]) and hence

λ2(−[P ]) = [P ⊗ P ]− [Λ2(P )).

Example 1.9. When R is local, we have K0(R) ∼= Z. Under this isomorphism the
operator λk corresponds to the operator on Z, which we will also write at λk, that
satisfies

λk(n) =

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!

at least when n ≥ 0. This holds since Λk(Rn) is free of rank
(
n
k

)
for any n ≥ 0.

But what if n < 0? To figure this out, we use the notation and results of the proof
of the lemma. We have

λt(−m) = 1/λt(m) ∈ Z[[t]]

and so if m > 0, we get

λt(−m) =
1

1 +mt+
(
m
2

)
t2 + · · ·

=
1

(1 + t)m
= (1− t+ t2 − t3 + · · · )m.

Thus λk(−m) is the coefficient of tm in (1− t+ t2 − t3 + · · · )m. It turns out that
this shows

λk(n) =
n(n− 1) · · · (n− k + 1)

k!
is also the correct formula, even when n < 0.
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The commutative ring K0(R) equipped with the operators λk, k ≥ 0, form what’s
called a (special) lambda ring. Roughly, this means that they are natural operators
satisfying

λk(a+ b) =

k∑
i=0

λk−i(a)λi(b),

and such that the rules describing how the operators interact with multipliation
and composition are given by certain universal polynomials. In detail, we have

λk(a · b) = Pk(λ1(a), . . . , λk(a), λ1(b), . . . , λk(b))

for some polynomial Pk in 2k variables, and similarly for λk(λj(a)). We will not
need the details.

More generaly, starting with the exterior power functors for locally free coherent
sheaves, one defines lambda operators on K0(X), making it into a a special lambda
ring. Even if one is only interested in Grothendieck groups of commutative rings,
passing to schemes is valuable due to the following important fact:

The Splitting Princple: For each noetherian ring R and P ∈
P(R), there exists a morphism of noetherian schemes p : X →
Spec(R) such that
(1) the induced map p∗ : K0(R)→ K0(X) is injective and

(2) p∗[P ] =
∑rank(P )
i=1 [Li] where the Li’s are line bundles on X

(i.e., coherent sheaves that are locally free of rank 1).
More generally, the analogous result holds for schemes: starting
with any noetherian scheme Y and locally free coherent sheaf P
on Y , there is a morphism p : X → Y such that the above two
properties hold.

In fact, X may be taken to be the flag variety over R associated to P .
With the notation of the Splitting Principle, since λk(Li) = 0 for all k ≥ 2, we

have

p∗λk([P ]) = λk([p∗P ]) =
∑

i1<···<ik

[Li1 ] · · · [Lik ]

for eny k. The right side of this equation a priori belongs to K0(X), but since the
left hand side is in the image of p∗, we may intepret this equatin as occuring in
K0(X) (but not so for the individual terms of the right-hand side). In other words,
λk([P ]) is the k-th elementary symmetric polynomial evaluated on [L1], . . . , [Lk].

1.3. Adams operations. The Adams operations are classically defined by com-
bining the lambda operations together in a specific way so as to produce operators
that are linear. They are based on work of Frank Adams, working in the context
of topological vector bundles.

The k-th Adams operation ψk on K0(R) is defined as follows. Recall that ho-
momorphism of abelian groups λt : K0(R) → K0(R)[[t]]× defined in the proof of
Lemma 1.6. For any commutative ring A and variable t, write dlog : A[[t]]× → A[[t]]
for the function sending p(t) =

∑
i ait

i to

dlog(p(t)) :=
p′(t)

p(t)
=

∑
i iait

i−1∑
i ait

i

(“the derivative of the natural log of p(t)”). Then dlog converts multiplication to
addition; i.e. it is a homomorphiam of abelian groups, where the operation on the
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source is power series multiplication and the operation on the the target is addition
of power series.

For α ∈ K0(R), set

ψt(α) = rank(α)− tdlog(λ−t(α))

Since dlog converts multiplicaiton to addition, ψt : K0(R)→ K0(R)[[t]] is a homo-
morphism of additive groups. We define

ψk : K0(R)→ K0(R)

as the composition of ψt with the map that sends a power series to its tk coefficient.
By construction, ψk is a homomorphism of abelian groups for each k ≥ 0.

Example 1.10. Let’s compute ψk for k ≤ 3. We have

dlog(λ−t(α)) =
λ−t(α)′

λ−t(α)

=
−λ1(α) + 2λ2(α)t− 3λ3(α)t2 + · · ·

1− λ1(α)t+ λ2(α)t2 − · · ·
= (−λ1(α) + 2λ2(α)t− 3λ3(α)t2 + · · · )(1 + λ1(α)t+ (λ1(α)2 − λ2(α))t2 + · · · )
= −λ1(α) + (−λ1(α)2 + 2λ2(α))t+ (−λ1(α)3 + λ1(α)λ2(α) + 2λ2(α)λ1(α)− 3λ3(α)2)t2 + · · ·

Since λ1(α) = α, it follows that

ψ0(α) = rank(α)

ψ1(α) = α

ψ2(α) = α2 − 2λ2(α)

ψ3(α) = α3 − 3λ2(α)α+ 3λ3(α)

Remark 1.11. Let’s double check that ψ2 is additive on short exact sequences di-
rectly: Given 0→ P ′ → P → P ′′ → 0, we have

ψ2(P ) = [P ]2 − 2[Λ2(P )]

= ([P ′] + [P ′′])2 − 2([Λ2(P ′)] + [P ′ ⊗ P ′′] + [Λ2(P ′′)])

= [P ′]2 − 2[Λ(P ′)] + [P ′′]2 − 2[Λ(P ′′)]

= ψ2(P ′) + ψ2(P ′′).

In general, the functional equation defining the Adams operations leads to the
recursive formula
(1.12)
ψk(α)−ψk−1(α)λ1(α)+ψk−2(α)λ2(α)−· · ·+(−1)k−1ψ1(α)λk−1(α)+(−1)kkλk(α) = 0.

The key properties of the Adams operations are summarized in:

Proposition 1.13. For each k ≥ 0,

(1) ψk : K0(R)→ K0(R) is a ring endomorphism for each R (and likewise for
K0(X) for each X),

(2) ψk is natural for ring maps (and more generally for morphisms of schemes),
(3) if L is a rank one projective R-module (or, more generally, a coherent sheaf

locally free of rank 1 on a scheme), then ψk([L]) = [L⊗k].

Moreover, these properties uniquely characterize the operator ψk.
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Proof. We’ve already oberved that ψk preserves addition.
Property (2) follows by induction on k using (1.12) and the fact that the lambda

operations are natural.
Property (3) also follows from (1.12) by induction on k, using also that λj([L]) =

0 for all j ≥ 2.
The multiplicativity follows from the additivity and the splitting principle. In

detail, it suffices to check ψk([P ][P ′]) = ψk([P ])ψk([P ′]). In the case when [P ] and
[P ′] are sums of classes of line bundles, this holds by (3) and the fact that ψk is
additive. The general case follows by naturalty and the Splitting Principle.

The last assertion also follows from the Splitting Principle. �

Remark 1.14. Given P ∈ P(R), let π : X → Spec(R) be as in the Splitting
Principle, so that π∗([P ]) =

∑r
i=1[Li]. Then

π∗ψk([P )] =

r∑
i=1

[L⊗ki ].

In other words, ψk takes [P ] to the k-th Newton polynomial evaluated at [L1], . . . , [Lr].
The k-th Newton polynomial is symmetric, and every symmetric polynomial can

be written in terms of the elementary symmetric polynomials. This gives another
method of expressing ψk in terms of λ1, . . . , λk.

Corollary 1.15. If R has characteristic p for some prime p, then ψp : K0(R) →
K0(R) coincides with the map induced by extension of scalars along the Frobenius
map φ : R→ R.

Proof. The map φ∗ : K0(R) → K0(R) is a natural ring homomoriphism and one
can check that φ∗(L) ∼= L⊗p for any line bundle L on a scheme of characteristic p.
The result follows from the Proposition. �

Exercise 1.16. Prove φ∗(L) ∼= L⊗p for any rank one projective R-module L.

Exercise 1.17. Use the proposition to prove

(1.18) ψk ◦ ψj = ψkj

for all k, j ≥ 0. (In particular, this shows ψk and ψj commute.)

1.4. A Theorem of Grothendieck. Finally, we mention a famous theorem of
Grothendieck. (Technically, Grothendieck did not phrase this Theorem in terms of
Adams operations.)

Theorem 1.19 (Grothendieck, 1950’s). If X is a smooth variety over a field,
then for any integer k ≥ 2, the action of ψk on K0(X)Q is diagonalizable with

eigenvalues in the set k0, . . . , kdim(X). In other words we have an internal direct
sum decomposition

K0(X)Q =

dim(X)⊕
j=0

K0(X)
(j)
Q

where we define K0(X)
(j)
Q := ker((ψk − kj) : K0(X)Q → K0(X)Q), the eigenspace

of the operator ψkQ of eigenvalue kj.
Moreover, for each j, we have isomorphisms

K0(X)
(j)
Q
∼= CHj(X)Q
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where CHj(X) is the Chow group of codimension j cycles modulo rational equiava-
lence.

Exercise 1.20. Prove the subspace K0(X)
(j)
Q is independent of the choice of k ≥ 2.

Tip: Use (1.18).

2. Day 2: Algebraic K-theory with supports

A good reference for the material in this seciton is the paper “Intersection Theory
using Adams Operations”, Inventiones Mathematicae, by Gillet and Soulé.

Much of what we do in this section would work just as well for arbitrary schemes,
but for the sake of concreteness we will stick to affine ones. Let us fix some notation:

• R is a commutative Noetherian ring.
• Z is a Zariski closed subset of Spec(R). So,

Z = V (I) := {p ∈ Spec(R) | I ⊆ p}

for some ideal I ⊆ R.
• PZ(R) is the category of bounded complexes of finitely generated and pro-

jective R-modules with homology supported on Z. That is, a typical object
is a complex of the form

P := (· · · → 0→ Pm → · · · → Pn → 0→ · · · )

with each Pi a finitely generated and projective R-module, such that Pp

is an acyclic complex for all p ∈ Spec(R) \ Z. Morphisms in PZ(R) are
chain maps. (Recall that before we wrote P(R) for the category of f.g.
R-modules; to avoid confusion, we’ll not use that notation from now on.)

2.1. Grothendieck group with supports.

Definition 2.1. KZ
0 (R), the Grothendieck group of PZ(R), is the abelian group

generated by the set of classes [P ] for each object P of PZ(R), subject to two types
of relations:

[P ] = 0 if P is exact, and

[P ] = [P ′] + [P ′′] if there exists a short exact sequence of complexes of the form

0→ P ′ → P → P ′′ → 0.

Exercise 2.2. Establish the following facts:

(1) We have

(2.3) [P ] + [P ′] = [P ⊕ P ′] ∈ KZ
0 (R),

for any pair of objects P, P ′ ∈ PZ(R).
(2) For any P ∈ PZ(R), we have [ΣP ] = −[P ] in KZ

0 , where ΣP is the suspen-
sion (shift) of P . (Tip: Use the short exact sequence 0→ P → cone(idP )→
ΣP → 0.)

(3) Given P, P ′ ∈ PZ(R), if there exists a quasi-isomorphism α : P → P ′ in
PZ(R), then [P ] = [P ′] in KZ

0 (R). (Consider 0 → P ′ → cone(α) → P →
0.)

(4) Every element ofKZ
0 (R) is equal to one of the form [P ] for some P ∈ PZ(R).
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Example 2.4. Suppose M is a finitely generated R-module of finite projective
dimension, and choose a bounded resoltion P

∼−→ M by finitely generted projec-
tive modules. Then P is an object of Psupp(M)(X) and hence determines a class

[P ] in K
supp(M)
0 (R). If P ′ is another such resolution, then P and P ′ are homo-

topy equivalent and hence [P ] = [P ′]. So M determines a well-define element of

K
supp(M)
0 (R).

Remark 2.5. Associated to PZ(X) we have its homotopy category, written hot(PZ(X)).
The objects of this category are the same as for PZ(X), but morphisms are homo-
topy equivalence classes of chain maps. The category PZ(X) has the structure of a
triangulated category. The suspension functor Σ is the usual shift functor for chain
complexes. By definition, a triangle P1 → P2 → P3 → ΣP1 is distinguished if it is

isomorhic (in hot(PZ(X)) to one of the form P
α−→ P ′

can−−→ cone(α)
can−−→ ΣP .

KZ
0 (R) may be equivalently defined as the Grothendieck group of this triangu-

lated category. This means that

[ΣP ] = −[P ]

and

[P ] = [P ′] + [P ′′]

whenever there is a distinguished triangle P ′ → P → P ′′ → Σ(P ′) in hot(PZ(X)).

Example 2.6. There is a canonical isomorphism KSpecR
0 (R)

∼=−→ K0(R), where
K0(R) is the Grothendieck group of f.g. projective R-modules, that takes the class
of an object P ∈ P(X) to the alternating sum of its components. The inverse takes
the class of a f.g. projective R-module to the class of the complex obtained by
regarding it as a complex concentrated in degree 0.

Exercise 2.7. Prove the assertions of the previous example.

Using the universal mapping property for presetations of abelian groups, we have
the following: If A is any abelian group and ρ is a function assigning to each object
of PZ(X) an element of A such that

ρ(P ) = 0, if P is acyclic

and

ρ(P ) = ρ(P ′) + ρ(P ′′), if there is a short exact sequence 0→ P ′ → P → P ′′ → 0

then ρ induces a unique homomorphism of abelian groups (also written as ρ)

ρ : KZ
0 (X)→ A,

defined by ρ([P ]) = ρ(P ).

2.2. Complexes with finite length homology. Of particular interest for us will
be the category Pm(R) and its associated Grothendieck group Km

0 (R), when (R,m)
is a local ring. (Technically the superscripts sould be “{m}” not “m”, but we will
use the latter.) We may equivalently describe an object of Pm(R) as a bounded
complex of finitely generated projective R-modules having finite length homology.
In particular, if M is a finite length R-module of finite projective dimension, then
M determines a class in Km

0 (R) by choosing a free resolution.
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Lemma 2.8. If m is a maximal ideal of R, the map χ : obPm(R)→ Z sending P
to
∑
i(−1)i lengthRHi(P ) induces a homomorpihsm

χ : K
{m}
0 (R)→ Z.

If (R,m) is a regular local ring, this map is an isomorphism and K
{m}
0 (R) is

the free abelian group of rank 1 generated by the class of the Koszul complex on a
regular system of paramters.

Proof. If P is acyclic then χ(P ) = 0. Using the long exact sequence in homol-
ogy associated to a short exact sequence of chain complexes, we see that χ is also
additive on short exact seqeunces of complexes. It thus induces the indicated ho-
momorphism χ on Km

0 (R).
Assume R is regular local and let K ∈ Pm(R) be the Koszul complex on a regular

system of parameters. Then H0(K) = R/m and Hi(K) = 0 for all i 6= 0, and hence
χ([K]) = 1. In particular, χ is onto. Let E be any object of Pm(R). It remains
to show [E] is in the subgroup generated by [K]. We proceed by induction on
h = h(E) =

∑
i lengthRHi(E). If h = 0, then E is acyclic and hence [E] = [0] = 0.

Assume h > 0. Pick i as large as possible1 so that Hi(E) 6= 0, and then pick
α ∈ Hi(E) such that α 6= 0 and mα = 0. Since Hj(E) = 0 for j > i, it follows
that there is a chain map g : ΣiK → E such that the induced map on Hi has the
form R/m → Hi(E), sending 1 to α. Let C = cone(g). Then we have an exact
sequence 0→ E → C → Σi+1K → 0 so that [E] = [C]+(−1)i[K]. By construction,
h(C) = h(E)− 1 and thus by induction [C] ∈ Z · [K], and we are done. �

Question 2.9. Does the analogue of the previous Lemma hold for Z/2-graded com-
plexes?

Remark 2.10. When R is not regular, Km
0 (R) is in general much bigger than Z.

It is typically not at all easy to compute its value, and it is typically not finitely
generated. Here is one case in which it can be computed: Assume (R,m) is a
local domain of dimension 1, and let F be its field of fractions. Then we have an
isomorphism of abelian groups

F×

R×
∼= Km

0 (R)

(with the left-hand side being mutliplicative.) The map sends a
b ∈ F× to [R

a−→
R]− [R

b−→ R] ∈ Km
0 (R) for any a, b ∈ R \ {0}. (Note that R

c−→ R has finite length
homology for any 0 6= c ∈ R since we assume dim(R) = 1.)

Note that if R is regular (i.e., a DVR) then the valuation mapping gives an
isomorphism F×/R× ∼= Z, as the Lemma tells us.

Exercise 2.11. Prove the assertions of the previous remark.

2.3. Cup product. Given a pair of closed subset Z and W of Spec(R), tensor
product of complexes determines a bi-functor

PZ(R)× PW (R)→ PZ∩W (R)

given by (P, P ′) 7→ P ⊗R P ′, that is bi-exact and preserves homotopy equivalences
in each argument. It thus induces a bilinear pairing:

1In my talk, I neglected to assume i is as large as possible, which is necessary for this argument
to be valid.
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Definition 2.12. The cup product pairing is the map on Grothendieck groups

− ∪− : KZ
0 (R)×KW

0 (R)→ KZ∩W
0 (R)

given by [P ]∪[P ′] = [P⊗RP ′]. (Here P⊗RP ′ refers to the tensor product complex.)

This is a well-defined pairing, since P ⊗R − maps ayclic complexes to acyclic
complexes, and short exact sequences to short exact sequences, and similarly for
− ⊗R P ′. Moreover, for P ∈ PZ(R), P ′ ∈ PW (R), if p ∈ Spec(R) \ (Z ∪W ) then
either Pp or P ′p is exact, and hence so is (P ⊗R P ′)p ∼= Pp ⊗Rp

P ′p. This shows that

the target of − ∪− is indeed KZ∩W
0 (R).

The following is easy to prove by checking on generators:

Lemma 2.13. The cup product operation is commutative, associative, and unital,
in the appropriate senses.

Example 2.14. Suppose (R,m) is a local ring of dimension d and let x1, . . . , xd
is a system of paramters. Let KosR(xi) = (· · · 0 → R

xi−→ R → 0 → · · · ) be the

Koszul complex on xi, for each i. Then [KosR(xi)] ∈ KV (xi)
0 (R) for each i and we

have an equation

[KosR(x1)] ∪ · · · ∪ [KosR(xd)] = [KosR(x1, . . . , xd)] ∈ Km
0 (R),

since V (x1, · · · , xd) = {m}.

Example 2.15. Given a finitely generated R-module M of finite projective dimen-

sion a chosen bounded resolution PM gives a class in K
supp(M)
0 (R). For another

such module N , we have [PN ] ∈ Ksupp(N)
0 (R) and

[PM ] ∪ [PN ] = [M ⊗L
R N ] ∈ Ksupp(M)∩supp(N)

0 (R).

2.4. Intersection multiplicity. Building on the previous example, suppose in
addition that R is local and M and N are chosen such that supp(M)∩ supp(N) ⊆
{m}. (This is equivalent to lengthR(M ⊗R N) <∞.) Recall that there is a map

χ : K
{m}
0 (R)→ Z

given by χ([P ]) =
∑
j(−1)j lengthHj(P ). We get that

χ([PM ] ∪ [PN ]) =
∑
i

(−1)i lengthR(TorRi (M,N)) =: χ(M,N).

This is Serre’s intersection multiplicity formula.
The goemetric intution here is the following: Say M = R/I and N = R/J have

finite projective dimension (e.g., say R is regular) and
√
I + J = m. Geometrically,

V (I) and V (J) meet only at the single point {m} The integer χ(R/I,R/J) gives
the multiplicity of the intersection.

Example 2.16. Let k be a field and R = k[[x, y]]. Suppose I = (f(x, y) and
J = (g(x, y)) meet only at the maximal ideal. Then f, g have no common factors,

and hence form a regular seuqnece, so that TorRi (R/f,R/g) = 0 for i 6= 0. We get

χ(R/f,R/g) = lengthRR/(f, g) = dimk R/(f, g).
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2.5. Functorality. Let φ : R → S is a ring map and write φ# : Spec(S) →
Spec(R) be the induced map on spectra (i.e., φ#(p) = φ−1(p)). Suppose Z ⊆
Spec(R) and W ⊆ Spec(S) closed subsets such that (φ#)−1(Z) ⊆ W . (That is,
assume that if q ∈ Spec(S) \W then g−1(q) ∈ Spec(R) \ Z.) Then φ induces a
homomorpihsm

φ∗ = φZ,W∗ : KZ
0 (R)→ KW

0 (S).

To see that the target is correct, suppose q ∈ Spec(S) \W and P ∈ PZ(R). By
assumption p = φ−1(q) /∈ Z and thus

(P ⊗R S)q ∼= Pp ⊗Rp
Sq

is acyclic.

Example 2.17. If φ = idR and Z ⊆ W ⊆ Spec(R), KZ
0 (R)→ KW

0 (R) is induced
by the inclusion PZ(R) ⊆ PW (R). Beware that this map on Grothendieck groups
is often not injective, since upon enlarging the support, one not only enlarges the
number of generators but also the numbers of relations.

For example, if R is a local domain, W = Spec(R) and Z is any proper closed

subset, then KZ
0 (R)→ K

Spec(R)
0 (R) is the zero map: For recall that K

Spec(R)
0 (R) ∼=

K0(R) ∼= Z, with the composition sending [P ] to
∑
i(−1)i rankR(Pi). If P ∈ KZ

0 (R)
and Z ⊆ Spec(R), then P ⊗R F is acyclic, where F is the field of fractions of R. It
follows that

∑
i(−1)i rankR(Pi) = 0.

Example 2.18. For any f ∈R, we have the localization map φ : R → R[1/g],
which induces the map

KZ
0 (R)→ K

Z\V (g)
0 (R[1/g])

sending [P ] to [P [1/g]].

2.6. A right exact sequence.

Theorem 2.19 (Gillet-Soulé). For a regular ring R, closed subset Z of Spec(R),
and element g ∈ R, the seqeunce

K
Z∩V (g)
0 (R)→ KZ

0 (R)→ K
Z\V (g)
0 (R[1/g])→ 0

is exact.

Sketch of proof. The proof relies on the following fact: For any regular ring B and

ideal J , we have an isomorphism G0(B/J)
∼=−→ K

V (J)
0 (B), where G0(B/J) denotes

the Grothendieck group of all finitely generated B/J-modules and the map sends
the class of such a module to the class of a projective resolution of it. The proof of
this fact is not difficult, but we omit it.

Say Z = V (I). Since R is regular, using the fact above, the sequence in the
statement is isomorphic to the sequence

G0(A/f)→ G0(A)→ G0(A[1/f ])→ 0,

where A = R/I, the first map is induced by restriction of scalars and the second by
localization. The latter sequence is a portion of the well-known localization long
exact sequence in G-theory; we include a sektch of the proof, adapted from Weibel’s
book “An Intoduction to Algebraic K-theory”.

The composition G0(A/f))→ G0(A)→ G0(A[1/f ]) is the 0 map since N [1/f ] =
0 for any A/f -module N . Given a finitely generated A[1/f ]-module M , by choosing
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a presentation and clearing denominaors, we constrct a finitely generated A-module
N such that N [1/f ] ∼= M . It follows that G0(A)→ G0(A[1/f ]) is onto.

Set Γ = coker(G0(A/f) → G0(A)). By what we’ve already shown, there is an
induced surjection Γ → G0(A[1/f ])), and we need to show it is an isomorphism.
We do so by constructing an inverse. For each finitely generated A[1/f ]-module M ,
choose a “lift” to a finitely generated A-module N such that there is an isomprhism
N [1/f ] ∼= M of A[1/f ]-modules, and set α(M) ∈ Γ to be the image of the class
[N ] ∈ G0(A) under the canonical map G0(A) � Γ. If we can show that α induces
a well-defined additive function that is independent of the choice of N , then the
induced map α : G0(A[1/f ]) → Γ will be a left inverse of ΓτG0(A[1/f ]) and the
proof will be complete.

It remains to show α(M) does not depend on the choice of N and that it is
additive on ses’s. If N ′ is another such lift, then there exists an isomorhism g :

N [1/f ]
∼=−→ N ′[1/f ] of A[1/f ]-modules. Multiplying though by a sufficiently high

power of f , this map g may be assumed to send N to N ′. That is, g lifts to a
homomorphim g̃ : N → N ′, whose kernel and cokernel are annilated by a power of
f . So, each admits a filtration by objects annilhated by f itself, and thus [ker(g̃)]
and [coker(g̃)] both lie in the image of G0(A/f)→ G0(A). It follows that α(M) is
a well-defined function, independent of the choice of N .

Given a short exact sequence of finitely generated A[1/f ]-modules 0 → M ′ →
M →M ′′ → 0, we may find finitely generated A-modules N,N ′ and maps N ′ → N ,
N → N ′′ that lift these. The composition of N ′ → N → N ′′ is not a priori 0, but
multiplciaty thorugh by a power f , this can be arranged. So, we have a complex
0→ N ′ → N → N ′′ → 0, and its homology is annilated by a power of f . As before,
it follows that

[N ] = [N ′] + [N ′′]

holds in Γ. �

2.7. Adams operations. We come to the central tool. In order to better under-
stand the groups KZ

0 (R), we need to decompose them into so-called “weight pieces”
that have certain desireably property. These weight peices are obtained by taking
eindepaces for certain Adams operators. All of this is analogous to what was done
by Grothendieck for K0(R).

Definition 2.20 (Gillet-Soulé). Let C be a collection of commutative noetherian
rings and let k be a positive integer. An Adams operation of degree k defined on C
is a collection of functions

ψk = ψkR,Z : KZ
0 (R)→ KZ

0 (R)

for all R ∈ C and all closed subsets Z ⊆ Spec(R) such that four axioms hold:

(1) (Additivity) Each ψkR,Z is an endomorphism of abelian groups.

(2) (Multiplicativity) For any R ∈ C and closed subsets Z,W of Spec(R), the
diagram

KZ
0 (R)×KW

0 (R)
∪ //

ψkR,Z×ψ
k
R,W

��

KZ∩W
0 (R)

ψkR,Z∩W
��

KZ
0 (R)×KW

0 (R)
∪ // KZ∩W

0 (R)

commutes.
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(3) (Naturality) Given a ring homomorphism φ : R → S, with R,S ∈ C, and
closed subsets Z ⊆ Spec(R), and W ⊆ Spec(S) such that (φ#)−1(Z) ⊆W ,
the diagram

KZ
0 (R)

φZ,W∗ //

ψkR,Z
��

KW
0 (S)

ψkS,W
��

KZ
0 (R)

φZ,W∗ // KW
0 (S)

commutes.
(4) (Normalization) For all R ∈ C and a ∈ R

ψkR,V (a)([KosR(a)]) = k · [KosG(a)] ∈ KV (a)
0 (R),

where KosR(a) =
(
· · · → 0→ R

a−→ R→ 0→ · · ·
)

, the Koszul complex on
a.

Remark 2.21. These axioms do not uniquely specify the operator.

Example 2.22. Given an Adams operation on C of degree k, suppose a1, . . . , ac ∈
R and R ∈ C, and let

KosR(a1, . . . , ac) =
⊗
i

KosR(ai).

The multipilcative and normalization axioms give

ψk([KosR(a1, . . . , ac)]) = kc[KosR(a1, . . . , ac)] ∈ KV (a1,...,ac)
0 (R).

2.8. Frobenius. One example of an Adams operation comes from the Frobenius,
as we explain.

Let p be a prime and Cp the collection of all commutative noetherian rings
of characteristic p. For each R ∈ Cp, let F : R → R denote the Frobenious
endomorphism. Since F ∗ : Spec(R) → Spec(R) is the identity map of topological
spaces, for each closed subset Z we have an induced map

F∗ : KZ
0 (R)→ KZ

0 (R)

that sends [P ] to [P ⊗R FR].

Proposition 2.23. F∗ is an Adams operation of degree p defined on Cp.

Proof. Axioms 1 and 2 hold since F∗ is the homomorphism induced by extension
of scalars. Axiom 3 holds by the naturality of Frobenius. For Axiom 4, we have

KosR(a)⊗R FR ∼= KosR(ap)

and so it suffices to prove [KosR(ap)] = p[KosR(a)] ∈ K
V (a)
0 (R) — this actually

holds for any ring R, element a ∈ R and integer p:
Let α : KosR(ap−1)→ KosR(ap) be the chain map given as the idenity in degree

1 and multiplication by a in degree 0. Then cone(α) ∼ KosR(a) and hence

[KosR(ap)] = [KosR(ap−1)] + [KosR(a)].

The result thus following by induction on p. �
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3. Day 3: Existence of Adams Operations, Weight Decompositions

3.1. The Adams Operations of Gillet-Soulé.

Theorem 3.1 (Gillet-Soulé). For each k ≥ 1, there exists an Adams operation ψkGS
of degree k defined on the collection of all commutative noetherian rings. Moreover,

ψkGS ◦ ψ
j
GS = ψjkGS .

for all j, k ≥ 1. In particular, any two such operations commute.

Some comments:

• They first establish λ operations on KZ
0 (R) and define ψkGS via the same

formula used for classical K0.
• These λ operations are defined by replacing complexes with simplicial mod-

ules (Dold-Kan correspondence) and taking exerior powers. This idea this
goes back to Dold-Puppe.
• A difficult argument is needed to verify the axioms of a λ ring.

We will not prove the Theorem of Gillet-Soulé.

3.2. Cyclic Adams Operations. I present another way to create Adams opera-
tions due to [Brown-Miller-Thompson-W]. We call these “cyclic Adams operation”.

An overview:

• The construction requires fixing a prime p and we build the operators only
for the cateogry of Z[1/p, ζp]-algebras, where ζp = e2πp, a primitive p-th
root of unity. We build an Adams operation of degree p.
• Starting with an arbitrary local ring R, we could pick p /∈ m and pass to

a finite étale extension R ⊆ R′ with ζp ∈ R′. For many application, no
important information is lost by this process and so these operations are
usually good enough.
• ψpcy can be defined in other contexts too: e.g., on the Grothendieck group

of matrix factorizations.

For a bounded complex P of finitely generated, projectiveR-modules, and integer
n ≥ 0, define

Tn(P ) :=

n︷ ︸︸ ︷
P ⊗R · · · ⊗R P

The symmetric group Σn acts on Tn(P ) by permuting the tensor factors and ad-
hering to the Koszul sign convention:

τ · (x1 ⊗ · · · ⊗ xn) = ±xτ(1) ⊗ · · · ⊗ xτ(n)
where the xi’s are homogenous elements of P . The sign is uniquely determined by
the following rule: When τ is the adjascent transposition τ = (i i + 1) for some
1 ≤ i ≤ n− 1, we have

τ · (x1 ⊗ · · · ⊗ xn) = (−1)|xi||xi+1|x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ xi ⊗ xi+2 ⊗ · · · ⊗ xn.
(For a general τ , the sign is (−1)e where e =

∑
i<j,τ−1(i)>τ−1(j) |xi||xj |.) Also, this

sign rule gives that the action of Σn commutes with the differential on Tn(P ); that
is, we may regard Tn(P ) as a complex of left modules over the group ring R[Σn].

Let Cn = 〈σ〉 be the cyclic supgroup of Σn of order n generated by the cyclic
permutation σ = (1 2 · · · n). Then Cn acts on Tn(P ) by

σ · (x1 ⊗ · · · ⊗ xn) = (−1)|x1|(|x2|+···+|xn|)x2 ⊗ · · · ⊗ xn ⊗ x1
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Now assume n = p, for a prime p, and that R contain 1
p and a primitive p-th

root of unity ζp. These assumptions give that the group ring R[Cp] ∼= R[x]/(xp−1)
decomposes as a product of copies of R, indexed by the primitive p-th roots of
unity. We thus get an internal direct sum decomposition

T p(P ) =

p−1⊕
j=0

T p(P )(ζ
j
p)

of complexes of R-modules, where we set

T p(P )(ζ
j
p) = ker(T p(P )

σ−ζjp−−−→ T p(P )),

a subcomplex of T p(P ).
In this document, we are primarily interested in the case p = 2. Note that

ζ2 = −1 and for P ∈ PZ(R) the group Σ2 = C2 = 〈σ〉 acts on T 2(P ) by σ ·(x⊗y) =
(−1)|x||y|y ⊗ x. So,

T 2(P )(1) = S2(P ) := {α ∈ P ⊗R P | σ · α = α}.
and

T 2(P )(−1) = Λ2(P ) := {α ∈ P ⊗R P | σ · α = −α}.
Since we assume 1

2 ∈ R, we have an internal direct sum decomposition

T 2(P ) = S2(P )⊕ Λ2(P )

of chain complexes. In particular, we have

(3.2) supp(S2(P )) ⊆ supp(P ) and supp(Λ2(P )) ⊆ supp(P ).

For example, if P is a projective module viewed as a complex with trivial differ-
ential concentrated in even degree d, then we may idenitfy S2(P ) and Λ2(P ) with
the classical second symmetric and exterior powers of P , viewed as a complex in
degree 2d. In the same situation but with d odd, the roles are flipped. In general,
the graded module underlying S2(P ) for an arbitrary P is the tensor product of the
classical second symmetric power of the even part of P with the classical second
exterior power of the odd part, and vice versa for Λ2(P ).

Proposition 3.3 (Brown-Miller-Thompson-W). Assume p is a prime and that
1
p , ζp ∈ R. For any Z, there is a well-defined endomorphism of abelian groups

ψpcy : KZ
0 (R)→ KZ

0 (R)

given on generators by the formula

ψpcy([P ]) = [T p(P )(1)]− [T p(P )(ζp)].

In particular, for p = 2, we have the operator

ψ2
cy([P ]) = [S2(P )]− [Λ2(P )].

Definition 3.4. The function ψpcy described in the Proposition is called the p-th
cyclic Adams operation

Proof when p = 2. For P ∈ PZ(R) set ψ2
cy(P ) = [S2(P )]− [Λ2(P )] ∈ KZ

0 (R). Note

that ψ2
cy(P ) does indeed belong to KZ

0 (R) by (3.2). We must show this function

respects the two defining relations of KZ
0 (R).

Given a quasi-isomorphism P
∼−→ P ′, we have a quasi-isomorhism P ⊗R P

∼−→
P ′ ⊗R P ′. Since 1

2 ∈ R, this map decomposes as a direct sum of maps of the
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form S2(P )→ S2(P ′) and Λ2(P )→ Λ2(P ′), and each of these must also be quasi-
isomorphisms. This proves ψcy(P ) = ψcy(P ′).

Suppose 0 → P ′
i−→ P → P ′′ → 0 is a short exact sequence in PZ(R). We

consider the filtration of complexes

0 = F0 ⊆ F1 ⊆ F2 ⊆ F3 = P ⊗R P
where F1 = P ′ ⊗R P ′ and F2 = P ′ ⊗R P + P ⊗R P ′. (Here, we interpret i as an
inclusion of a subconplex P ′ into P .) This fitlration respects the action of C2. We
have C2-equivariant isomorphisms of complexes

F2/F1
∼= P ′ ⊗R P ′′ ⊕ P ′′ ⊗R P ′

where the C2 action on the right is determined by the action σ(x′⊗x′′) = (−1)|x
′′||x′|x′′⊗

x′ on the first summand. Likewise, we have a C2-equivariant isomorphism

F3/F2
∼= P ′′ ⊗R P ′′.

It follows that we have isomorpihsm of complexes

(F1/F0)(1) ∼= S2(P ′)

(F1/F0)(1) ∼= Λ2(P ′)

(F2/F1)(1) ∼= P ′ ⊗R P ′′

(F2/F1)(1) ∼= P ′ ⊗R P ′′

(F3/F2)(1) ∼= S2(P ′′)

(F3/F2)(1) ∼= Λ2(P ′′)

which gives
[S2(P )] = [S2(P ′)] + [P ′ ⊗R P ′′] + [S2(P ′′)]

and
[Λ2(P )] = [Λ2(P ′)] + [P ′ ⊗R P ′′] + [Λ2(P ′′)].

Taking the difference of the previous two equations yelds

ψ2
cy(P ) = ψ2

cy(P ′) + ψ2
cy(P ′′).

�

Theorem 3.5 (Brown-Miller-Thompson-W). ψpcy satsifies the four Gillet-Soulé
axioms on the category Cp.

Skethc of Proof when p = 2. The first axiom, additivity, is given by Proposition
3.3.

I omit a proof of the second axiom, multiplicativity, although it is not too hard.
The third axiom, naturality, is a consequence of the naturality of the functors

S2 and Λ2.
Let a ∈ R and set K = KosR(a). Then T 2(K) = KosR(a, a) ∼= KosR(a, 0).

Explicitly, if K has R-basis α, β with |α| = 1, |β| = 0 and d(α) = aβ, then
KosR(a, 0) has basis x = α ⊗ α, y = α ⊗ β + β ⊗ α, z = β ⊗ α − α ⊗ β, and
w = β ⊗ β, of degrees 2, 1, 1, 0 respectively. Relative to this basis, we compute the
action of the differntial and the transposition operators: d(x) = az, d(y) = 2aw,
d(z) = 0, and d(w) = 0, and σ · x = −x, σ · y = y, σ · z = −z, and σ · w = w. It
follows that

S2(K) ∼= KosR(2a)
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and

Λ2(K) ∼= Σ KosR(−a).

Hence

ψcy(K) = [KosR(2a)] + [KosR(−a)] = [KosR(a)] + [KosR(a)] = 2[K].

This establishes the final axiom. �

It is not known (at least to me) if the cyclic Adams operations coincide with
those defined by Gillet and Soulé in all situations in which the former are defined.
But we do know this:

Proposition 3.6 (BMTW). Let R be a noetherian ring and p a prime. If p! is
invertible in R, then ψpcy and ψpGS coincide as operators on KZ

0 (R) for all Z. In

particular, ψ2
cy = ψ2

GS for local rings (R,m) with char(R/m) 6= 2.

3.3. The weight decomposition. As mentioned, the essential feature of Adams
operations is that they decompose rationalized Grothendieck groups of regular rings
into “weight pieces”. The precise statement is:

Theorem 3.7 (Gillet-Soulé). Assume ψk is an Adams operation of degree k, for
any k ≥ 2, defined on some collection of commutative rings C that is closed under
localization. If R ∈ C is regular and Z = V (I) ⊆ R is any closed subset, then there
exists an internal direct sum decomposition

KZ
0 (R)⊗Z Q =

dim(R)⊕
j=height(I)

KZ
0 (R)(j)

where we define

KZ
0 (R)(j) := ker(KZ

0 (R)⊗Z Q ψk−kj−−−−→ KZ
0 (R)⊗Z Q).

In other words, the theorem says that the operator ψk ⊗Z Q is diagonalizable
with eigenvalues conained in the set {kj | height(I) ≤ j ≤ dim(R)}. In yet other
words, KZ

0 (R)Q is annihlated by
∏

height(I)≤j≤dim(R)(ψ
k − kj).

Definition 3.8. The subsapce KZ
0 (R)

(j)
Q the j-th weight space for the operator

ψk. To indicate the (possible) dependence on the choice of operator, we sometimes

write this KZ
0 (R)

(j)
ψk

Q .

Remark 3.9. Before proving this Theorem, we make an observation that is simple
but important in applications: the weight decomposition is multiplicative. That
is, for all R,Z, i, j, given an Adams operations, the cup product pairing induces a
pairing on the associate weight pieces of the form

KZ
0 (R)

(i)
Q ×K

W
0 (R)

(j)
Q → KZ∩W

0 (R)
(i+j)
Q .

This is immediate from Axiom 2 and the definitions.

Sketch of Proof. Let us regard K
V (I)
0 (R)Q as a Q[t]-module with t acting as ψk.

We need to prove it is annihlated by the polynomial
∏

height(I)≤j≤dim(R)(t− kj).
If this is false for some regular noetherian ring R, then we may find an ideal

I that is maximal among those ideals for which it fails to hold. Let p ⊇ I be a
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minimal prime containing I. By taking colimits over all g ∈ R \ p in Theorem 2.19,
we have the right exact sequence⊕

g∈R\p

K
V (I,g)
0 (R)Q → K

V (I)
0 (R)Q → K

pRp

0 (Rp)Q → 0

of Q[t]-modules (i.e., the the maps commute with the action of ψk by Axiom 3.)
By choice of I, the summand indexed by g in the left-most term is annihilated by∏

height(I,g)≤j≤dim(R)(t
k − kj) and so, since height(I, g) > height(I) for all such g,

the left-most term is annihilated by
∏

height(I)+1≤j≤dim(R)(t
k − kj).

Since Rp is regular local of dimension height(I), by Lemma 2.8 the right-most
term is generated by the class of a Koszul complex on height(I) elements. Thus,
by Example 2.22, this term isa nnihlated by tk − kheight(I).

Since
∏

height(I)+1≤j≤dim(R)(t
k − kj) and tk − kheight(I) are relatively prime el-

ements of Q[t], it follows that the middle term K
V (I)
0 (R)Q is annihlated by their

product, namely
∏

height(I)≤j≤dim(R)(t− kj). We have reached a contradiction. �

Remark 3.10. This proof does not show that KZ
0 (R)Q admits such a weight decom-

position for an arbitrary noetherian ring R. The most important things that fails

in the proof is that K
pRp

0 (Rp) is not necessarily or “pure wieght” — i..e., ψk need
not act as multiplicatin by kh on it.

Exercise 3.11. Assume ψk, Φj are degree k, j Adams operation with k, j ≥ 2.
Prove that if ψk and Φj commute, then

KZ
0 (R)

(j)
ψk

Q = KZ
0 (R)

(j)Φj
Q

In particular if j = k and ψk and Φk commute, then the operators themselves
coincide: ψkQ = ΦkQ.

Remark 3.12. It is not known (at least to me) if the assumption that ψk,Φj com-
mute is needed for the previous exercise. That is, it is unknown if the weight
decomposition is independent of the choice of a Adams operation. Likewise, it is
unknown if, for a fixed k ≥ 2, the G-S axioms uniquely specify the rational degree
k Adams operator for a regular ring.

Exercise 3.13. Prove that if p is a prime and C is the category of commutative
Noetherian rings of charactistic p, then for any Adams operation ψk of degree k
defined on C, we have

KZ
0 (R)

(j)
ψk

Q = KZ
0 (R)

(j)F
Q

where F is the degree p Adams operation induced by Frobenius. Conclude in
particular that if k = p, then ψk = F .

4. Day 4: The Serre Vanishing Conjecture, the Total Rank
Conjecture, and Speculations

We give some applications of the machinery developed in the first three lectures.
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4.1. Serre Vanishing Conjecture. In this section we present the proof of the
Serre Vanishing Conjecture (for regular rings) due to Gillet and Soulé. In fact,
we present a slight modification of their original proof, one that uses the cyclic
operations instead of the ones they used.

Let us recall the intersection pairing:

Definition 4.1. Let (R,m) be a local ring, and let M and N be finitely generated
R-modules such that supp(M) ∩ supp(N) ⊆ {m} (or, equivalently, lengthR(M ⊗R
N) < ∞). Assume also that either pdR(M) < ∞ or pdR(N) < ∞. Then the
intersection multiplicity of M and N is the integer

χ(M,N) =
∑
j

(−1)j length TorRj (M,N).

Conjecture 4.2 (Serre). Suppose R is a regular local ring and M and N are finitely
generated R-modules such that supp(M)∩ supp(N) ⊆ {m}. If dim(M)+ dim(N) <
dim(R), then χ(M,N) = 0.

Heuristically, the conjecture predicts that if the supports of M and N “ought
not” meet, then their intersection multiplicity is 0.

Example 4.3. Two curves in three space meeting at the origin should have inter-
section multiplicity 0. That is, for the ring R = k[[x, y, z]], given prime ideals p,
q such that dim(R/p) = 1, dim(R/q) = 1 and p + q is m-primary, then we expect
χ(R/p, R/q) = 0. Let’s check this holds for a pair of “axes”: Let p = (x, y), q =
(y, z). We may resolve each by Koszul complexes and so their derived tensor prod-
uct is KosR(x, y, y, z) ∼= KosR(x, y, z, 0), which is quasi-isomorphic to the complex

· · · → 0→ k
0−→ k → 0→ · · · , and hence χ = 0.

Remark 4.4. The SVC was proven by Serre himself if R is regular and contains a
field.

The conjecture admits an evident generalization to the case when R is local,
but not necessarily regular, provided either pdR(M) < ∞ or pdR(N) < ∞. It is
known to be false at that level of generality; see the famous example constructed
by [Dutta-Hochster-McLaughlin].

However, it remains on open conjecture for an arbitrary local ring R if it is
assumed that both M and N have finite projective dimension. This has been proven
to hold when R is a complete intersection ring by Roberts and, independantly, by
Gillet and Soulé. Roberts has also proven it for isolated singularities.

The Gillet-Soulé Proof of SVC for all regular local rings. Let R be a regular local
ring, M,N finitely generated R-modules such that length(M ⊗R N) < ∞ and
dim(M) + dim(N) < d = dim(R). We show χ(M,N) = 0 by following Gillet and
Soule’s proof closely, except that we will use the cyclic Adams operations. This
requires the addition of one preiminary step:

Pick a prime integer p such that p 6= char(R/m). Then 1
p ∈ R. There exists a

finite étale extension R ⊆ R′ of regular local rings such that R′ contains a primitive
p-th root of unity ζp. For such an extension we have

χR′(M ⊗R R′, N ⊗R R′) = dimR/m(R′/m′) · χR(M,N).

We may thus assume without loss of generality that R contains ζp, so that the
cyclic Adams operator ψpcy is defined.
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Choose projective resolutions PM and PN of M and N . Then

[PM ] ∈ Ksupp(M)
0 (R)⊗Z Q =

d⊕
j=d−dim(M)

K
supp(M)
0 (R)(j)

by Theorem 4.6, and similarly for [PN ]. Since the cup product respects the weight
decomposition (see Remark 3.9), we have

[PM ] ∪ [PN ] = [PM ⊗R PN ] ∈
⊕

i≥d−dim(M),j≥d−dim(N)

Km
0 (R)(i+j).

The assumption dim(M) + dim(N) < d implies i+ j > d for all such pairs, but we
also know that Km

0 (R)⊗Z Q = Km
0 (R)(d). It follows that

[PM ] ∪ [PN ] = 0 ∈ Km
0 (R)Q

and hence

χ(M,N) = χ([PM ] ∪ [PN ]) = 0.

�

4.2. The Total Rank Conjecture. Let (R,m) be a local ring and assume M is
an R-module of finite length such that M 6= 0 and pdR(M) < ∞. Let βRi (M)

denote the i-th Betti number of M , defined as βRi (M) = dimk TorRi (M,k) or,
equivalently, as the rank of the i-th free module in the minimal free resolution of M
over R. A famous conjecture of Buchsbaum-Eisenbud and Horrochs predicts that
βRi (M) ≥

(
d
i

)
where d = dim(R). It remains open even for regular local rings, and

even for polynomials rings in the graded setting.
Since

∑
i

(
d
i

)
= 2d, an evident consequence of the BEH conjecture is:

Conjecture 4.5 (Avramov’s Total Rank Conjecture). For a local ring R and a
non-zero R-module M of finite length and finite projective dimension, we have∑

i

βRi (M) ≥ 2dim(R).

Theorem 4.6 (Walker). Let (R,m) be a regular local ring such that char(k) 6= 2.
If P belongs to Pm(R) and P is not exact, then

rankR(P ) ≥ 2dim(R) |χ(P )|
h(P )

,

where rankR(P ) =
∑
i rankR(Pi), χ(P ) =

∑
i(−1)i lengthRHi(P ), and h(P ) =∑

i lengthRHi(P ).
In particular, the Total Rank Conjecture holds for R.

Proof. The last assertion follows from the first by taking P to be the minimal free
resolution of M , since rank(P ) =

∑
i β

R
i (M) and χ(P ) = h(P ) in this case.

Since we assume char(k) 6= 2, R contains 1
2 (and, obviously, ζ2 = −1), and thus

the cyclic Adams operation ψ2
cy is defined for R. Since R is regular, Km

0 (R) is gen-

erated by the class of the Koszul complex. It follows that ψ2
cy acts as multiplication

by 2d on this group, and it follows that

χ(ψ2
cy(P )) = 2dim(R) · χ(P ).
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Recall that ψcy(P ) = [S2(P )]− [Λ2(P )] so that

χ(ψ2
cy(P )) = χ(S2(P ))−χ(Λ2(P )) ≤

∑
i even

lengthRHi(S
2P )+

∑
i odd

lengthRHi(Λ
2P ).

Since P ⊗R P = S2(P )⊕ Λ2(P ) it follows that

χ(ψ2
cy(P )) ≤ h(P ⊗R P )

I claim that

(4.7) h(P ⊗R P ) ≤ rank(P )h(P ).

To see this, consider the convergent spectral sequence

E2
i,j = Hi(P ⊗R Hj(P )) =⇒ Hi+j(P ⊗R P )

that arises from regarding P⊗RP as a the toalization of bicomplex. Since lengthRE
∞
i,j ≤

lengthRHi(P⊗RHj(P )) for all i, j and lengthRHn(P⊗RP ) =
∑
i+j=n lengthRE

∞
i,j ,

we deduce

lengthRHn(P ⊗R P ) ≤
∑

i,j;i+j=n

lengthRHi(P ⊗R Hj(P ))

for each n.
Now, Hi(P ⊗RHj(P )) is a subquotient of the finite lenght module Pi⊗RHj(P ),

and hence

(4.8) lengthRHi(P ⊗R Hj(P )) ≤ rankR(Pi) length(Hj).

We conclude

h(P⊗RP ) ≤
∑
n

∑
i+j=n

rankR(Pi) length(Hj) =
∑
i,j

rankR(Pi) lengthR(Hj) = rank(P )h(P ).

To conlude the proof, we just put the inequalites above together to get

rank(P )h(P ) ≥ 2dim(R)χ(P ),

and since h(P ) > 0 we conclude

rankR(P ) ≥ 2dim(R)χ(P )

h(P )
.

Appling this inequality to ΣP in place P , and using that rankR(ΣP ) = rankR(P ),
h(ΣP ) = h(P ), and χ(ΣP ) = −χ(P ), we also get

rankR(P ) ≥ −2dim(R)χ(P )

h(P )
. �

Remark 4.9. The inequality (4.7) can also be proven without using spectral se-
quences. More generally, if M is any bounded complex of R-modules having fi-
nite length homology, I claim h(P ⊗R M) ≤ rank(P )h(M). Both sides are unaf-
fected by replacing M with any complex that is quasi-isomorphic to it. In par-
ticular, it holds when M is acylic. If M is not acyclic, proceed by induction on
w = w(M) := max{n | Hn(M) 6= 0} −min{n | Hn(M) 6= 0}. When w = 0, M is
quasi-isomorphic to a module viewed as a complex concentrated in one degree. In
this case the inequality holds for the same reason (4.8) holds. For w > 0, by using
a “soft truncation”, we may find a short exact sequence

(4.10) 0→M ′ →M →M ′′ → 0
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of non-acyclic, bounded complexes with finite length homology such that the map
induced map on homology H(M) → H(M ′′) is surjective, w(M ′) < w(M), and
w(M ′′) < w(M). These conditions imply that h(M) = h(M ′) + h(M ′′). More-
over, the long exact seqeuence in homology associated to the short exact sequence
obtained by applying P ⊗R − to (4.10) yields the inequality

h(P ⊗RM) ≤ h(P ⊗RM ′) + h(P ⊗RM ′′).

By induction and the equation h(M) = h(M ′) + h(M ′′) we get

h(P ⊗RM) ≤ β(P )h(M ′) + β(P )h(M ′′) = β(P )h(M).

Remark 4.11. I also have a proof of the Total Rank Conjecture in the following
cases:

(1) R is a “Roberts ring” (for example, a complete intersection ring) and
char(R/m) 6= 2 or

(2) R is any local ring such that char(R) = p for an odd prime p.

4.3. Marix Factorizations. I provide no details, but would mention that [Brown-
Miller-Thompson-W] also use cyclic Adams operations to prove a conjecture due to
Hailong Dao concerning the vanishing of the theta invariant for isolated hypersur-
face singularities. Our proof requires developing a good notion of Adams operations
for matrix factorizations. Since this involves working with Z/2-graded complexes,
the Adams operations of Gillet-Soulé do not exist in this context.

4.4. Speculations. I close with some slightly speculative statements.
Fix a local ring (R,m) and assume there exists a surjection π : Q � R with

Q regular local, and let I = ker(π). Such a surjection exists if, for example, R is
complete. Then for each finitely generatedR-moduleM , we may choose a projective
resolution PM

∼−→M of M as a Q-module, obtaining a class

[PM ] ∈ KV (I)
0 (Q).

(In fact, the assignment M 7→ [PM ] induces isomorphism

ρ : G0(R) ∼= K
V (I)
0 (Q),

where G0(R) is the Grothendieck group of finitely generated R-modules, but we
will not need this fact here.)

Let ψk be an Adams operation of degree k, k ≥ 2, defined on Q and its local-
izaitons.

Definition 4.12 (Kurano). With the notation above, an R-module M is called a
test module (relative to π and ψk) if

(1) M is a (f.g.) MCM R-module and

(2) the class [PM ] ∈ KV (I)
0 (Q) has weight c := dim(Q) − dim(R) for ψk; that

is, [PM ] ∈ KV (I)
0 (Q)

(c)
Q or equivalently

ψk([PM ]) = kc[PM ] modulo torsion.

Example 4.13. Suppose R = Q/(f1, . . . , fc) for some regular local ring Q and
regular seqeunce of elements f1, . . . , fc in the maximal ideal of Q. Then R is a
test module over itself (relative to the canonical surjection Q� R) for any Adams
operation. Indeed, it is MCM since R is Cohen-Macaulay, and the class of R in
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K
V (I)
0 (Q) is [KosQ(f1, . . . , fc)], which, as we’ve seen, has weight c. (Note that

c = dim(Q)− dim(R).)

The following is equivalent to a (very strong) conjecture of Kurano:

Conjecture 4.14. Let R be a complete, local domain. Then R has a test module.

I will call the following statement a “proto-theorem”, since while I have a sketch
of a proof, some details have not been checked carefully.

ProtoTheorem 4.15. Suppose (R,m) is a local ring of dimension d and char(R/m) 6=
2. Assume F ∈ Pm(R) has the form

F = (· · · → 0→ Fd → · · · → F0 → 0→ · · · )
and that H0(F ) 6= 0.

If R admits a test module relative to ψ2
cy (for some surjection Q � R), then

rankR(F ) ≥ 2d. In particular, the Total Rank Conjecture holds for such a ring R.

Remark 4.16. By the New Intersection Theorem [Roberts], the complex F occuring
in the statement is the “narrowest” possible complex of projective modules having
non-zero, finite length homology. Also, the theorem would become false if F were
allowed to be any wider; see [Iyengar-Walker].

Sketch of Proof. The second assertion follows from first since by the Auslanger-
Buchsbaum formula, the minimal free resolution of a non-zero R-module of finite
length and finite projective dimension has the form of F .

Suppose π : Q� R is a surjection with kernel I such that Q is regular and that
M is a test module for R relative to π and ψ2

cy. As usual, let PM
∼−→ M be the

minimal Q-free resolution of M .
Modulo some careful checking of the details, I assert there is a pairing

− ∩− : Km
0 (R)×KV (I)

0 (Q)→ Z,

called the “cap product” pairing, that has the following properties:

(1) For any R-module N , if PN
∼−→ N is a Q-free resolution of N , then

[E] ∩ [PN ] = χ(E ⊗R N) =
∑
i

(−1)i lengthRHi(E ⊗R N),

for any E ∈ Pm(R).
(2) ψk[E] ∩ ψk[P ] = kdim(Q)([E] ∩ [P ]), for any Adams operation ψk.

We apply this using the Adams operation ψ2
cy:

By assumption, ψ2
cy([PM ]) = 2c[PM ] and thus by the second property of the cap

product pairing we have

2dim(Q)[F ] ∩ [PM ] = ψ2
cy[F ] ∩ ψkcy([PM ]) = 2c ψ2

cy([F ]) ∩ [PM ]

which gives

ψ2
cy([F ]) ∩ [PM ] = [F ] ∩ [PM ] = 2dim(Q)−c[F ] ∩ [PM ] = 2dim(R)χ(F ⊗RM).

(The last equality uses the first property of the cap product pairing.)
The rest of the proof is very similar to the proof of Theorem 4.6 given above. In

detail, we have

ψ2
cy([F ])∩[PM ] = [S2(F )]∩[PM ]−[Λ2(F )]∩[PM ] = χ(S2(F )⊗RM)−χ(Λ2(F )⊗RM)
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and the argument in that proof applies here verbatim to show

ψ2
cy([F ]) ∩ [PM ] ≤ rankR(F )h(F ⊗RM).

Combining these facts gives

(4.17) 2dim(R)χ(F ⊗RM) ≤ rankR(F )h(F ⊗RM).

So far we have used neither that M is an MCM R-module nor that F is “narrow”.
These facts together imply that the homology of F ⊗RM is concentrated in degree
0:

Hi(F ⊗RM) ∼=

{
0, if i 6= 0 and

H0(F )⊗RM, if i = 0.

In particular, χ(F ⊗RM) = h(F ⊗RM), and the Theorem follows from (4.17) by
dividing by the positive integer h(F ⊗RM). �
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