Gröbner deformations

Matteo Varbaro (University of Genoa, Italy)

CIME-CIRM Course on Recent Developments in Commutative Algebra Levico Terme, 1-5/7/2019

Squarefree monomial ideals and fiber-full modules

Our next goal is to show that, for an ideal $I \subset R$ such that $in_w(I)$ is a squarefree monomial ideal, then $S = P / hom_w(I)$ is a fiber-full P-module. To do so, we need to recall some notion:

Let $J \subset R$ a monomial ideal minimally generated by monomials μ_1, \ldots, μ_r . For all subset $\sigma \subset \{1, \ldots, r\}$ we define the monomial $\mu(J, \sigma) := \operatorname{lcm}(\mu_i | i \in \sigma) \in R$. If v is the *q*th element of σ we set $\operatorname{sign}(v, \sigma) := (-1)^{q-1} \in K$. Let us consider the graded complex of free *R*-modules $F_{\bullet}(J) = (F_i, \partial_i)_{i=0,\ldots,r}$ with

$$F_i := \bigoplus_{\substack{\sigma \subset \{1, \dots, r\} \\ |\sigma| = i}} R(-\deg \mu(J, \sigma)),$$

and differentials defined by $1_{\sigma} \mapsto \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \frac{\mu(J, \sigma)}{\mu(J, \sigma \setminus \{v\})} \cdot 1_{\sigma \setminus \{v\}}$. It is well known and not difficult to see that $F_{\bullet}(J)$ is a graded free R-resolution of R/J, called the *Taylor resolution*.

For any positive integer k we introduce the monomial ideal

$$J^{[k]} = (\mu_1^k, \ldots, \mu_r^k).$$

Notice that μ_1^k, \ldots, μ_r^k are the minimal system of monomial generators of $J^{[k]}$, so $\mu(J^{[k]}, \sigma) = \mu(J, \sigma)^k$ for any $\sigma \subset \{1, \ldots, r\}$.

Theorem

If $J \subset R$ is a squarefree monomial ideal, for all $i \in \mathbb{Z}$ and $k \in \mathbb{N}_{>0}$ the map $\operatorname{Ext}_{R}^{i}(R/J^{[k]}, R) \to \operatorname{Ext}_{R}^{i}(R/J^{[k+1]}, R)$, induced by the projection $R/J^{[k+1]} \to R/J^{[k]}$, is injective.

Corollary

Let $I \subset R$ be an ideal such that $in_w(I)$ is a squarefree monomial ideal. Then $S = P / hom_w(I)$ is a fiber-full *P*-module.

Proof of the corollary: Notice that $\hom_w(I) + tP = \inf_w(I) + tP$ is a squarefree monomial ideal of P. So, by the previous theorem, the maps $\operatorname{Ext}_P^i(S/tS, P) \to \operatorname{Ext}_P^i(P/(\hom_w(I) + tP)^{[m]}, P)$ are injective for all $m \in \mathbb{N}_{>0}$. Since $(\hom_w(I) + tP)^{[m]} \subset \hom_w(I) + t^m P$, these maps factor through $\operatorname{Ext}_P^i(S/tS, P) \to \operatorname{Ext}_P^i(S/t^mS, P)$, hence the latter are injective as well. \Box

Proof of the theorem: Let u_1, \ldots, u_r be the minimal monomial generators of J. For all $k \in \mathbb{N}_{>0}, \sigma \subset \{1, \ldots, r\}$ set $\mu_{\sigma}[k] := \mu(J^{[k]}, \sigma)$ and $\mu_{\sigma} := \mu_{\sigma}[1]$. Of course μ_{σ} is a squarefree monomial and, for what we said above, $\mu_{\sigma}[k] = \mu_{\sigma}^{k}$.

Squarefree monomial ideals and fiber-full modules

The module $\operatorname{Ext}_{R}^{i}(R/J^{[k]}, R)$ is the *i*th cohomology of the complex $G^{\bullet}[k] = \operatorname{Hom}_{R}(F_{\bullet}[k], R)$ where $F_{\bullet}[k] = F_{\bullet}(J^{[k]}) = (F_{i}, \partial_{i}[k])_{i=0,\dots,r}$ is the Taylor resolution of $R/J^{[k]}$. Let $F_i \xrightarrow{f_i} F_i$ be the map sending 1_{σ} to $\mu_{\sigma} \cdot 1_{\sigma}$. The collection $F_{\bullet}[k+1] \xrightarrow{f_{\bullet}=(f_i)_i} F_{\bullet}[k]$ is a morphism of complexes lifting $R/J^{[k+1]} \to R/J^{[k]}$ (since $\mu_{\sigma}[k] = \mu_{\sigma}^{k}$). So the maps $\operatorname{Ext}_{P}^{i}(R/J^{[k]}, R) \to \operatorname{Ext}_{P}^{i}(R/J^{[k+1]}, R)$ we are interested in are the homomorphisms $H^i(G^{\bullet}[k]) \xrightarrow{\overline{g^i}} H^i(G^{\bullet}[k+1])$ induced by $g^{\bullet} = \text{Hom}(f_{\bullet}, R) : G^{\bullet}[k] \to G^{\bullet}[k+1]$. Let us see how $\overline{g^i}$ acts: if $G^{\bullet}[k] = (G^i, \partial^i[k])$, then $G^i = \operatorname{Hom}_R(F_i, R)$ can be identified with F_i (ignoring the grading) and $\partial^i[k]: G^i \longrightarrow G^{i+1}$ sends 1_{σ} to $\sum_{v \in \{1,...,r\} \setminus \sigma} \operatorname{sign}(v, \sigma \cup \{v\}) \left(\frac{\mu_{\sigma \cup \{v\}}}{\mu_{\sigma}}\right)^k \cdot 1_{\sigma \cup \{v\}}$ for all $\sigma \subset \{1, \ldots, r\}$ and $|\sigma| = i$. The map $g^i : G^i \to G^i$, up to the identification $F_i \cong G_i$, is then the map sending 1_σ to $\mu_\sigma \cdot 1_\sigma$.

Squarefree monomial ideals and fiber-full modules

Want: $\overline{g^i}$ injective. Let $x \in \text{Ker}(\partial^i[k])$ with $g^i(x) \in \text{Im}(\partial^{i-1}[k+1])$. We need to show that $x \in \text{Im}(\partial^{i-1}[k])$. Let $y = \sum_{\sigma} y_{\sigma} \cdot 1_{\sigma} \in G^{i-1}$ such that $\partial^{i-1}[k+1](y) = g^i(x)$. We can write y_{σ} uniquely as $y'_{\sigma} + \mu_{\sigma}y''_{\sigma}$ where no monomial in $\text{supp}(y'_{\sigma})$ is divided by μ_{σ} . If

$$y' = \sum_{\sigma} y'_{\sigma} \cdot 1_{\sigma}, \ y'' = \sum_{\sigma} y''_{\sigma} \cdot 1_{\sigma},$$

 $\begin{array}{l} g^{i}(x) = \partial^{i-1}[k+1](y) = \partial^{i-1}[k+1](y') + \partial^{i-1}[k+1](g^{i-1}(y'')) = \\ \partial^{i-1}[k+1](y') + g^{i}(\partial^{i-1}[k](y'')). \text{ Writing } z = \sum_{\sigma} z_{\sigma} \cdot 1_{\sigma} \text{ for } \\ \partial^{i-1}[k+1](y') \in G^{i}, \text{ we have} \end{array}$

$$z_{\sigma} = \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \left(\frac{\mu_{\sigma}}{\mu_{\sigma \setminus \{v\}}} \right)^{k+1} y'_{\sigma \setminus \{v\}}$$

Since J is squarefree and $\mu_{\sigma \setminus \{v\}}$ does not divide $y'_{\sigma \setminus \{v\}}$ for any $v \in \sigma$, μ_{σ} cannot divide z_{σ} unless it is zero. On the other hand, μ_{σ} must divide z_{σ} by the green equality. Therefore $z_{\sigma} = 0$, and since σ was arbitrary z = 0, that is: $g^{i}(x) = g^{i}(\partial^{i-1}[k](y''))$. Being $g^{i} : G^{i} \to G^{i}$ obviously injective, we have found $x = \partial^{i-1}[k](y'')$. \Box

Corollary

Let $I \subset R$ be an ideal such that $\operatorname{in}_w(I) \subset R$ is a squarefree monomial ideal. Then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module. So, if I is homogeneous and $\operatorname{in}(I)$ is a squarefree monomial ideal, then

 $\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}.$

This is the arrival point for these lectures, but it suggests also some open questions...

During the lectures we proved the following:

Theorem

Let $I \subset R$ be an ideal such that $S = P/\hom_w(I)$ is a fiber-full *P*-module. Then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module. So, if furthermore *I* is homogeneous:

$$\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}_{w}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}.$$

After this we proved that, if $in_w(I) \subset R$ is a squarefree monomial ideal, then $S = P / hom_w(I)$ is a fiber-full *P*-module. However, this is not the only instance: e.g., if $R / in_w(I)$ is Cohen-Macaulay (equivalently if *S* is CM), then it is not difficult to see that *S* is fiber-full.

More interestingly, we have:

- If K has positive characteristic, then S is fiber-full whenever $R/in_w(I)$ is F-pure (Ma).
- If K has characteristic 0, then S is fiber-full whenever $R/in_w(I)$ is Du Bois (Ma-Schwede-Shimomoto).
- S is fiber-full whenever R/in_w(I) is cohomologically full (a notion recently introduced by Dao-De Stefani-Ma).

Let us recall that, for a homogeneous ideal $J \subset R$, R/J is cohomologically full if, whenever $H \subset I$ such that $\sqrt{H} = \sqrt{J}$, the natural map $H^i_{\mathfrak{m}}(R/H) \to H^i_{\mathfrak{m}}(R/J)$ is surjective for all *i*. Often $in_w(I)$ is not a monomial ideal, rather a binomial ideal s.t.

$$R/\operatorname{in}_w(I) \cong K[\mathcal{M}] := K[Y^u : u \in \mathcal{M}] \subset K[Y_1, \ldots, Y_m].$$

for some monoid $\mathcal{M} \subset \mathbb{N}^m$. This is the case when dealing with SAGBI (or Khovanskii) bases.

Problem

Find a big class of monoids $\mathcal{M} \subset \mathbb{N}^m$ such that $\mathcal{K}[\mathcal{M}]$ is cohomologically full.

For example, if K has characteristic 0 and \mathcal{M} is seminormal, then $K[\mathcal{M}]$ is Du Bois combining results of Bruns-Li-Römer and Schwede. So $K[\mathcal{M}]$ is cohomologically full for a seminormal monoid \mathcal{M} .

We proved that, if A is a Noetherian graded flat K[t]-algebra, M is a f.g. A-module which is graded and flat over K[t], then $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over K[t] for all $i \in \mathbb{Z}$ whenever M is fiber-full.

Problem

With the above notation, when is it true that $Ext_A^i(M, A)$ is fiber-full whenever M is fiber-full?

For example, together with D'Alì we proved that, if M/tM is a squarefree *R*-module then *M* is fiber-full, and this implies a positive answer to the above problem when M/tM is a squarefree *R*-module. A consequence of this, is that the homological degrees (a notion introduced by Vasconcelos) of R/I and R in(I) are the same provided that in(I) is a squarefree monomial ideal.