Gröbner deformations

Matteo Varbaro (University of Genoa, Italy)

CIME-CIRM Course on Recent Developments in Commutative Algebra Levico Terme, 1-5/7/2019

In the following slides, A is a Noetherian flat K[t]-algebra and M a finitely generated A-module which is flat over K[t], and both A and M are graded K[t]-modules (think at A and M like they were, with the previous notation, P and S).

Lemma

The following are equivalent:

1 Ext^{*i*}_{*A*}(*M*, *A*) is a flat over *K*[*t*] for all
$$i \in \mathbb{N}$$
.

2 $\operatorname{Ext}^{i}_{A/t^{m}A}(M/t^{m}M, A/t^{m}A)$ is a flat over $K[t]/(t^{m}) \forall i, m \in \mathbb{N}$.

Proof: (1) \implies (2): Since *A* is flat over *K*[*t*], there is a short exact sequence $0 \rightarrow A \xrightarrow{\cdot t^m} A \rightarrow A/t^m A \rightarrow 0$. Consider the induced long exact sequence of $\text{Ext}_A(M, -)$:

$$\cdots \to \operatorname{Ext}_{A}^{i}(M,A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i}(M,A) \to \operatorname{Ext}_{A}^{i}(M,A/t^{m}A)$$
$$\to \operatorname{Ext}_{A}^{i+1}(M,A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i+1}(M,A) \to \dots$$

By (1), $\operatorname{Ext}_{A}^{k}(M, A)$ does not have *t*-torsion for all $k \in \mathbb{N}$, so for all $i \in \mathbb{N}$ we have a short exact sequence

$$0 \to \mathsf{Ext}^i_{\mathcal{A}}(M, \mathcal{A}) \xrightarrow{\cdot t^m} \mathsf{Ext}^i_{\mathcal{A}}(M, \mathcal{A}) \to \mathsf{Ext}^i_{\mathcal{A}}(M, \mathcal{A}/t^m \mathcal{A}) \to 0,$$

from which $\operatorname{Ext}_{A}^{i}(M, A/t^{m}A) \cong \frac{\operatorname{Ext}_{A}^{i}(M, A)}{t^{m}\operatorname{Ext}_{A}^{i}(M, A)}$. It is straightforward to check that the latter is flat over $K[t]/(t^{m})$ because (1). Finally, a previous lemma implies that

$$\operatorname{Ext}^{i}_{A}(M, A/t^{m}A) \cong \operatorname{Ext}^{i}_{A/t^{m}A}(M/t^{m}M, A/t^{m}A).$$

(2) \implies (1): By contradiction, suppose $\operatorname{Ext}_{A}^{i}(M, A)$ is not flat over K[t]. Because K[t] is a PID, then $\operatorname{Ext}_{A}^{i}(M, A)$ has nontrivial torsion. So, by the graded structure of $\operatorname{Ext}_{A}^{i}(M, A)$, there exists a nontrivial class $[\phi] \in \operatorname{Ext}_{A}^{i}(M, A)$ and $k \in \mathbb{N}$ such that $t^{k}[\phi] = 0$.

Let us take a A-free resolution F_{\bullet} of M, and let $(G^{\bullet}, \partial^{\bullet})$ be the complex $\operatorname{Hom}_{A}(F_{\bullet}, A)$, so that $\operatorname{Ext}_{A}^{i}(M, A)$ is the *i*th cohomology module of G^{\bullet} . Then $\phi \in \operatorname{Ker}(\partial^{i}) \setminus \operatorname{Im}(\partial^{i-1})$ and $t^{k}\phi \in \operatorname{Im}(\partial^{i-1})$.

Since *M* and *A* are flat over k[t], $F_{\bullet}/t^m F_{\bullet}$ is a $A/t^m A$ -free resolution of $M/t^m M$.

$$\operatorname{Ext}^{i}_{P/t^{m}P}(S/t^{m}S, P/t^{m}P) \cong H^{i}(\operatorname{Hom}_{P/t^{m}P}(F_{\bullet}/t^{m}F_{\bullet}, P/t^{m}P)).$$

Let $(\overline{G^{\bullet}}, \overline{\partial^{\bullet}})$ denote the complex $\operatorname{Hom}_{A/t^m A}(F_{\bullet}/t^m F_{\bullet}, A/t^m A)$, so that $\operatorname{Ext}^i_{A/t^m A}(M/t^m M, A/t^m A)$ is the *i*th cohomology module of $\overline{G^{\bullet}}$, and π^{\bullet} the natural map of complexes from G^{\bullet} to $\overline{G^{\bullet}}$. Of course $\pi^i(\phi) \in \operatorname{Ker}(\overline{\partial^i})$ and $t^k \pi^i(\phi) \in \operatorname{Im}(\overline{\partial^{i-1}})$. Now, it is enough to find a positive integer *m* such that $\pi^i(\phi)$ does neither belong to $\operatorname{Im}(\overline{\partial^{i-1}})$ nor to $t^{m-k} \operatorname{Ker}(\overline{\partial^i})$. If $\pi^{i}(\phi) \in \operatorname{Im}(\overline{\partial^{i-1}})$, then $\phi \in \operatorname{Im}(\partial^{i-1}) + t^{m}G^{i} = \operatorname{Im}(\partial^{i-1}) + t^{m}\operatorname{Ker}(\partial^{i}).$ Since ϕ does not belong to $\operatorname{Im}(\partial^{i-1})$, Krull's intersection theorem tells us that $\pi^{i}(\phi)$ cannot belong to $\operatorname{Im}(\overline{\partial^{i-1}})$ for all $m \gg 0$. Analogously, if $\pi^{i}(\phi) \in t^{m-k}\operatorname{Ker}(\overline{\partial^{i}})$, then

$$\phi \in t^{m-k} \operatorname{Ker}(\partial^{i}) + t^{m} G^{i} = t^{m-k} \operatorname{Ker}(\partial^{i}).$$

But $\phi \neq 0$, so, again using Krull's intersection theorem, $\pi^i(\phi) \notin t^{m-k}\overline{G^i}$ for all $m \gg 0$. \Box

In the above situation, we say that M is a *fiber-full* A-module if, for any $m \in \mathbb{N}_{>0}$, the natural projection $M/t^m M \to M/tM$ induces injective maps $\operatorname{Ext}_A^i(M/tM, A) \to \operatorname{Ext}_A^i(M/t^m M, A)$ for all $i \in \mathbb{Z}$.

Next we will see that, if M is a fiber-full A-module, then Extⁱ_A(M, A) is flat over K[t] for all $i \in \mathbb{Z}$. This circle of ideas are due (in slightly different contexts) to Ma-Quy and Kollar-Kovacs. After this, we will show that S is a fiber-full P-module provided that in_w(I) is a squarefree monomial ideal, and this will imply that

$$\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}$$

whenever $I \subset R$ is a homogeneous ideal such that $in(I) \subset R$ is a squarefree monomial ideal, a result of Conca and myself.

The previous lemma says that to show that $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over K[t] for all $i \in \mathbb{Z}$ it is enough to show that the $K[t]/(t^{m})$ -module $\operatorname{Ext}_{A/t^{m}A}^{i}(M/t^{m}M, A/t^{m}A)$ is flat for all $i \in \mathbb{Z}$ and $m \in \mathbb{N}_{>0}$. So we introduce the following helpful notation for all $m \in \mathbb{N}_{>0}$:

- $A_m = A/t^m A$.
- $M_m = M/t^m M$.
- $\iota_j: t^{j+1}M_m \to t^j M_m$ the natural inclusion $\forall j$.
- $\mu_j: t^j M_m \to t^{m-1} M_m$ the multiplication by $t^{m-1-j} \forall j$.
- $E_m^i(-)$ the contravariant functor $\operatorname{Ext}_{A_m}^i(-,A_m)$ $\forall i$.

Remark

A lemma of Rees implies that $E_m^i(M_k) \cong \operatorname{Ext}_A^{i+1}(M_k, A)$ whenever $k \leq m$. Hence we deduce that

$$E_m^i(M_k)\cong E_m^i(M_m) \ \forall \ k\leq m.$$

Remark

Since t is a non-zero-divisor on M we have that:

$$M_j \cong t^{m-j} M_m \quad \forall j.$$

Remark

The short exact sequences $0 \to t^{j+1}M_m \xrightarrow{\iota_j} t^j M_m \xrightarrow{\mu_j} t^{m-1}M_m \to 0$, if M is fiber-full, yield the following short exact sequences for all $i \in \mathbb{Z}$:

$$0 \rightarrow E_m^i(t^{m-1}M_m) \xrightarrow{E_m^i(\mu_j)} E_m^i(t^jM_m) \xrightarrow{E_m^i(\iota_j)} E_m^i(t^{j+1}M_m) \rightarrow 0.$$

Indeed, up to the above identifications, μ_j corresponds to the natural projection $M_{m-j} \to M_1$, therefore the map $E_m^i(\mu_j)$ is injective for all $i \in \mathbb{Z}$ by definition of fiber-full module.

Theorem

With the above notation, if M is a fiber-full A-module, then $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over K[t] for all $i \in \mathbb{Z}$.

Proof: By the previous lemma, it is enough to show that $E_m^i(M_m)$ is flat over $K[t]/(t^m)$ for all $m \in \mathbb{N}_{>0}$. This is clear for m = 1 (because K[t]/(t)) is a field), so we will proceed by induction: thus let us fix $m \ge 2$ and assume that $E_{m-1}^i(M_{m-1})$ is flat over $K[t]/(t^{m-1})$. The local flatness criterion tells us that is enough to show the following two properties:

- $E_m^i(M_m)/t^{m-1}E_m^i(M_m)$ is flat over $K[t]/(t^{m-1})$.
- 2 The map $\theta: (t^{m-1})/(t^m) \otimes_{K[t]/(t^m)} E^i_m(M_m) \to t^{m-1}E^i_m(M_m)$ sending $\overline{t^{m-1}} \otimes \phi$ to $t^{m-1}\phi$, is a bijection.

By the previous Remark $E_m^i(\iota_k)$ is surjective for all k, so $E_m^i(\iota^j)$ is surjective where $\iota^j := \iota_j \circ \ldots \iota_{m-2} : t^{m-1}M_m \to t^j M_m$. Since $\iota^j \circ \mu_j$ is the multiplication by t^{m-1-j} on $t^j M_m$, we therefore have

$$\operatorname{Im}(E_m^i(\mu_j)) = \operatorname{Im}(E_m^i(\mu_j) \circ E_m^i(\iota^j)) = t^{m-1-j}E_m^i(t^jM_m).$$

Therefore $\operatorname{Ker}(E_m^i(\iota_j)) = t^{m-1-j}E_m^i(t^jM_m)$. Hence

$$E_m^i(t^{j+1}M_m)\cong rac{E_m^i(t^jM_m)}{t^{m-1-j}E_m^i(t^jM_m)}.$$

Plugging in j = 0, we get that

$$\frac{E_m^i(M_m)}{t^{m-1}E_m^i(M_m)} \cong E_m^i(tM_m) \cong E_m^i(M_{m-1}) \cong E_{m-1}^i(M_{m-1})$$

is flat over $K[t]/(t^{m-1})$ by induction, and this shows (1).

Concerning (2), from what said above it is not difficult to infer that the kernel of the surjective map $E_m^i(\iota^0) : E_m^i(M_m) \to E_m^i(t^{m-1}M_m)$ is equal to $tE_m^i(M_m)$. Since $E_m^i(\mu_0) \circ E_m^i(\iota^0)$ is the multiplication by t^{m-1} on $E_m^i(M_m)$ and $E_m^i(\mu_0)$ is injective, we get

$$0:_{E_{m}^{i}(M_{m})}t^{m-1} = \operatorname{Ker}(E_{m}^{i}(\iota^{0})) = tE_{m}^{i}(M_{m}).$$

Since $\operatorname{Ker}(\theta) = \{\overline{t^{m-1}} \otimes \phi : \phi \in 0 :_{E_m^i(M_m)} t^{m-1}\}$, then θ is injective, and so bijective (it is always surjective). \Box

Corollary

Let $I \subset R = K[X_1, ..., X_n]$ be an ideal such that $S = P/\hom_w(I)$ is a fiber-full *P*-module (P = R[t]). Then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module. So, if furthermore *I* is homogeneous:

 $\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}_{w}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}.$