Gröbner deformations

Matteo Varbaro (University of Genoa, Italy)

CIME-CIRM Course on Recent Developments in Commutative Algebra Levico Terme, 1-5/7/2019

Fix $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$ a weight vector. If $\mu = X^u \in Mon(R)$ with $u = (u_1, \ldots, u_n)$ then we set $w(\mu) := w_1 u_1 + \ldots + w_n u_n$. If $0 \neq f \in R$ we set $w(f) := \max\{w(\mu) : \mu \in \operatorname{supp}(f)\}$ and

$$\operatorname{init}_{w}(f) = \sum_{\substack{\mu \in \operatorname{supp}(f) \\ w(\mu) = w(f)}} a_{\mu}\mu,$$

where
$$f = \sum_{\mu \in \text{supp}(f)} a_{\mu} \mu$$
.

Example

If
$$w = (2,1)$$
 and $f = X^3 + 2X^2Y^2 - Y^5 \in \mathbb{Q}[X, Y]$ then
 $init_w(f) = X^3 + 2X^2Y^2$.

Given an ideal $I \subset R$ we set $in_w(I) = (init_w(f) : f \in I) \subset R$.

As we will see, the passage from an ideal I to $in_w(I)$ can be seen as a "continuous" degenerative process. Before explaining it, we will show that, given a monomial order < on R and an ideal $I \subset R$, we can always find a suitable $w \in (\mathbb{N}_{>0})^n$ such that $in_w(I) = in_{<}(I)$.

Example

Let us find a weight vector that picks the largest monomial in every subset of monomials of degree $\leq d$ in K[X, Y, Z] for the lexicographic order determined by X > Y > Z. We give weight 1 to Z. Since $Y > Z^d$, we give weight d + 1 to Y. Since $X > Y^d$ and $w(Y^d) = d(d+1)$, we must choose w(X) = d(d+1) + 1. It is not hard to check that w = (d(d+1) + 1, d+1, 1) indeed solves our problem.

Given $w \in \mathbb{N}^n$ and < a monomial order, we define another monomial order on R as

$$\mu <_w \nu \iff \begin{cases} w(\mu) < w(\nu) \\ w(\mu) = w(\nu) \text{ and } \mu < \nu \end{cases}$$

Lemma

For an ideal $I \subset R$, if $in_w(I) \subset in_<(I)$ or $in_w(I) \supset in_<(I)$, then $in_w(I) = in_<(I)$.

Proof: By applying $in_{<}(-)$ on both sides we get, for example, $in_{<_{w}}(I) = in_{<}(in_{w}(I)) \supset in_{<}(in_{<}(I)) = in_{<}(I)$. So the equality $in_{<}(in_{w}(I)) = in_{<}(in_{<}(I))$ must hold, and because $in_{w}(I) \supset in_{<}(I)$ we must have $in_{w}(I) = in_{<}(I)$. \Box

Lemma

Let $P \subset \mathbb{R}^n$ be the convex hull of some vectors $u^1, \ldots, u^m \in \mathbb{N}^n$. Then $X^u \leq \max\{X^{u^1}, \ldots, X^{u^m}\}$ for any $u \in P \cap \mathbb{N}^n$.

Proof. If $u \in P \cap \mathbb{N}^n$, then $u = \sum_{i=1}^m \lambda_i u^i$ with $\lambda_i \in \mathbb{Q}_{\geq 0}$ and $\sum_{i=1}^m \lambda_i = 1$. If $\lambda_i = a_i/b_i$ with $a_i \in \mathbb{N}$, $b_i \in \mathbb{N} \setminus \{0\}$, then we have

$$bu = \sum_{i=1}^m a'_i u^i,$$

where $b = b_1 \cdots b_m$ and $a'_i = a_i(b/b_i)$. If, by contradiction, $X^u > X^{u^i}$ for all $i = 1, \dots, m$, then

$$(X^{u})^{b} > (X^{u^{1}})^{a'_{1}} \cdots (X^{u^{m}})^{a'_{m}}$$

(because $b = \sum_{i=1}^{m} a'_i$) but this contradicts the fact that these two monomials are the same. \Box

Proposition

Given a monomial order > on R and $\mu_i, \nu_i \in Mon(R)$ such that $\mu_i > \nu_i$ for i = 1, ..., k, there exists $w \in (\mathbb{N}_{>0})^n$ such that $w(\mu_i) > w(\nu_i) \ \forall \ i = 1, ..., k$. Consequently, given an ideal $I \subset R$ there exists $w \in (\mathbb{N}_{>0})^n$ such that $in_<(I) = in_w(I)$.

Proof: Notice that $\mu_i > \nu_i \iff \prod_j \mu_j > \nu_i \prod_{j \neq i} \mu_j$ and $w(\mu_i) > w(\nu_i) \iff w(\prod_j \mu_j) > w(\nu_i \prod_{j \neq i} \mu_j)$, so we can assume that μ_i is the same monomial μ for all i = 1, ..., k. If $\mu = X^u$ and $\nu_i = X^{v^i}$, consider $C = u + (\mathbb{R}_{\geq 0})^n \subset \mathbb{R}^n$ and $P \subset \mathbb{R}^n$ the convex hull of u and $v^1, ..., v^k$. We claim that $C \cap P = \{u\}$. Suppose that $v \in C \cap P$. We can assume that $v \in \mathbb{Q}^n$, so that there is $N \in \mathbb{N}$ big enough such that $Nv \in \mathbb{N}$. Let $\nu = X^{Nv}$. Since $v \in C, \nu$ is divided by $\mu^N = X^{Nu}$, so $\nu \geq \mu^N$. On the other hand, $v \in P \implies Nv \in NP$, so $\nu \leq \max\{Nu, Nv^i : i = 1, ..., k\} = Nu$ by the previous lemma, so $\nu = \mu^N$, that is v = u.

Therefore there is a hyperplane passing through u separating C and P, that is there is $w \in (\mathbb{R}^n)^*$ such that

 $w(v) > w(u) > w(v^i)$

for all $v \in C \setminus \{u\}$ and i = 1, ..., k. Of course we can pick $w = (w_1, ..., w_n) \in \mathbb{Q}^n$; furthermore the first inequalities yield $w_i > 0$ for all i = 1, ..., n. After taking a suitable multiple, so, we can assume $w \in (\mathbb{N}_{>0})^n$ is our desired weight vector.

For the last part of the statement, let f_1, \ldots, f_m be a Gröbner basis of *I*. By the first part, there is $w \in (\mathbb{N}_{>0})^n$ such that $w(\mu) > w(\nu)$ where $\mu = in(f_i)$ and $\nu \in supp(f_i) \setminus \{\mu\}$ for all $i = 1, \ldots, m$. So $in_{<}(I) \subset in_w(I)$, hence $in_{<}(I) = in_w(I)$. \Box

Let us extend R to P = R[t] by introducing a homogenizing variable t. The w-homogenization of $f = \sum_{\mu \in \text{supp}(f)} a_{\mu}\mu \in R$ is

$$\hom_w(f) = \sum_{\mu \in \operatorname{supp}(f)} a_{\mu} \mu t^{w(f) - w(\mu)} \in P.$$

Example

Let
$$f = X^2 - XY + Z^2 \in K[X, Y, Z]$$
. We have:

• hom_w(f) =
$$X^2 - XY + Z^2t^2$$
 if $w = (2, 2, 1)$.

• hom_w(f) =
$$X^2 - XYt^2 + Z^2t^6$$
 if $w = (4, 2, 1)$.

Given an ideal $I \subset R$, $\hom_w(I) \subset P$ denotes the ideal generated by $\hom_w(f)$ with $f \in I$. For its study, we extend the weight vector w to w' on P by w'(t) = 1, so that $\hom_w(I)$ is a w'-homogeneous ideal of P, where the grading is $\deg(X_i) = w_i$ and $\deg(t) = 1$.

Because $P/\hom_w(I)$ is a w'-graded P-module, it is also a graded K[t]-module (w.r.t. the standard grading on K[t]). So t - a is not a zero-divisor on $P/\hom_w(I)$ for any $a \in K \setminus \{0\}$. We want to show that also t is not a zero-divisor on $P/\hom_w(I)$ as well, and in order to do so it is useful to consider the *dehomogenization map*:

$$\pi: P \longrightarrow R$$

$$F(X_1, \ldots, X_n, t) \mapsto F(X_1, \ldots, X_n, 1).$$

Remark

• $\pi(\hom_w(f)) = f \forall f \in R.$ So, $\pi(\hom_w(I)) = I.$

② If $F \in P \setminus tP$ is w'-homogeneous, then hom_w($\pi(F)$) = F; moreover, if $r \in \mathbb{N}$ and $G = t^r F$, hom_w($\pi(G)$) $t^r = G$.

Summarizing, for $F \in P$ we have $F \in \hom_w(I) \iff \pi(F) \in I$.

Proposition

Given an ideal I of R, the element $t - a \in K[t]$ is not a zero divisor on $P / \hom_w(I)$ for every $a \in K$. Furthermore:

- $P/(\hom_w(I) + (t)) \cong R/\operatorname{in}_w(I).$
- $P/(\hom_w(I) + (t a)) \cong R/I$ for all $a \in K \setminus \{0\}$.

Proof. For the first assertion, we need to show it just for a = 0: Let $F \in P$ such that $tF \in \hom_w(I)$. Then $\pi(tF) \in I$, so, since $\pi(F) = \pi(tF)$, $F \in \hom_w(I)$.

For $P/(\hom_w(I) + (t)) \cong R/\operatorname{in}_w(I)$ it is enough to check that $\hom_w(I) + (t) = \operatorname{in}_w(I) + (t)$. This is easily seen since for every $f \in R$ the difference $\hom_w(f) - \operatorname{init}_w(f)$ is divisible by t. To prove that $P/(\hom_w(I) + (t - a)) \cong R/I$ for every $a \in K \setminus \{0\}$, we consider the graded isomorphism $\psi : R \to R$ induced by $\psi(X_i) = a^{-w_i}X_i$. Of course $\psi(\mu) = a^{-w(\mu)}\mu \forall \mu \in \operatorname{Mon}(R)$ and $\hom_w(f) - a^{w(f)}\psi(f)$ is divisible by t - a for all $f \in R$. So $\hom_w(I) + (t - a) = \psi(I) + (t - a)$, which implies the desired isomorphism. \Box

Remark

Since a module over a PID is flat iff it has no torsion, the proposition above says that $P/\hom_w(I)$ is a flat K[t]-module, and that it defines a flat family over K[t] with generic fiber R/I and special fiber $R/\inf_w(I)$.

Next we want to show that local cohomology cannot shrink passing to the initial ideal. We need the following first:

Lemma

Let A be a ring, M, N A-modules and $a \in \operatorname{ann}(N) \subset A$ a non-zero-divisor on M as well as on A. Then, for all $i \ge 0$,

 $\operatorname{Ext}^{i}_{\mathcal{A}}(M,N) \cong \operatorname{Ext}^{i}_{\mathcal{A}/a\mathcal{A}}(M/aM,N).$

Proof. Let F_{\bullet} be a free resolution of M. The Ext modules on the left hand side are the cohomology modules of $\text{Hom}_A(F_{\bullet}, N)$, which is a complex of A-modules isomorphic to $\text{Hom}_{A/aA}(F_{\bullet}/aF_{\bullet}, N)$ because a annihilates N. However F_{\bullet}/aF_{\bullet} is a free resolution of the A/aA-module M/aM since a is a non-zero-divisor on M as well as on A, so the cohomology modules of the latter complex are the Ext modules on the right hand side. \Box

Let us give a graded structure to $R = K[X_1, \ldots, X_n]$ by putting deg $(X_i) = g_i$ where $g = (g_1, \ldots, g_n)$ is a vector of positive integers (so that $\mathbf{m} = (X_1, \ldots, X_n)$ is the unique homogeneous maximal ideal of R). If $I \subset R$ is a g-homogeneous ideal, then hom_w $(I) \subset P$ is homogeneous with respect to the *bi-graded* structure on P given by deg $(X_i) = (g_i, w_i)$ and deg(t) = (0, 1). So S = P/ hom_w(I)and Ext $_P^i(S, P)$ are finetely generated bi-graded P-modules.

Notice that, given a finitely generated bi-graded *P*-module *M*, $M_{(j,*)} = \bigoplus_{k \in \mathbb{Z}} M_{(j,k)}$ is a finitely generated graded (w.r.t. the standard grading) K[t]-module for all $j \in \mathbb{Z}$. Finally, if *N* is a finitely generated K[t]-module, $N \cong K[t]^a \oplus T$ for $a \in \mathbb{N}$ and some finitely generated torsion K[t]-module *T* (since K[t] is a PID). If *N* is also graded, then $T \cong \bigoplus_{k \in \mathbb{N} > 0} (K[t]/(t^k))^{b_k}$.

From now, let us fix a g-homogeneous ideal $I \subset R$ and denote $P/\operatorname{hom}_w(I)$ by S. From the above discussion, for all $i, j \in \mathbb{Z}$:

$$\operatorname{Ext}_P^i(S,P)_{(j,*)} \cong K[t]^{a_{i,j}} \oplus \left(\bigoplus_{k \in \mathbb{N}_{>0}} (K[t]/(t^k))^{b_{i,j,k}} \right)$$

for some natural numbers $a_{i,j}$ and $b_{i,j,k}$. Let $b_{i,j} = \sum_{k \in \mathbb{N}_{>0}} b_{i,j,k}$.

Theorem

With the above notation, for any $i, j \in \mathbb{Z}$ we have:

• dim_K(Extⁱ_R(R/I, R)_j) =
$$a_{i,j}$$
.

• $\dim_{K}(\operatorname{Ext}_{R}^{i}(R/\operatorname{in}_{w}(I),R)_{j}) = a_{i,j} + b_{i,j} + b_{i+1,j}.$

In particular, $\dim_{\mathcal{K}}(\operatorname{Ext}_{R}^{i}(R/I, R)_{j}) \leq \dim_{\mathcal{K}}(\operatorname{Ext}_{R}^{i}(R/\operatorname{in}_{w}(I), R)_{j})$ and $\dim_{\mathcal{K}}(H_{\mathfrak{m}}^{i}(R/I)_{j}) \leq \dim_{\mathcal{K}}(H_{\mathfrak{m}}^{i}(R/\operatorname{in}_{w}(I))_{j}).$ *Proof.* Letting x be t or t-1 we have the short exact sequence

$$0 \to P \xrightarrow{\cdot x} P \to P/xP \to 0.$$

The long exact sequence of $\text{Ext}_P(S, -)$ associated to it, gives us the following short exact sequences for all $i \in \mathbb{Z}$:

$0 \rightarrow \operatorname{Coker} \alpha_{i,x} \rightarrow \operatorname{Ext}_{P}^{i}(S, P/xP) \rightarrow \operatorname{Ker} \alpha_{i+1,x} \rightarrow 0,$

where $\alpha_{k,x}$ is the multiplication by x on $\operatorname{Ext}_{P}^{k}(S, P)$. We can restrict the above exact sequences to the degree (j, *) for any $j \in \mathbb{Z}$ getting:

 $0 \to (\operatorname{Coker} \alpha_{i,x})_{(j,*)} \to (\operatorname{Ext}^i_P(S, P/xP))_{(j,*)} \to (\operatorname{Ker} \alpha_{i+1,x})_{(j,*)} \to 0.$

Notice that we have:

• (Coker
$$\alpha_{i,t}$$
) _{$(j,*) $\cong K^{a_{i,j}+b_{i,j}}$ and (Ker $\alpha_{i+1,t}$) _{$(j,*) $\cong K^{b_{i+1,j}}$.$}$}

• (Coker
$$\alpha_{i,t-1})_{(j,*)} \cong K^{a_{i,j}}$$
 and $(\operatorname{Ker} \alpha_{i+1,t-1})_{(j,*)} = 0$

Therefore, for all $i, j \in \mathbb{Z}$, we got:

- $(\operatorname{Ext}^{i}_{P}(S, P/tP))_{(j,*)} \cong K^{a_{i,j}+b_{i,j}+b_{i+1,j}}$.
- $(\operatorname{Ext}_{P}^{i}(S, P/(t-1)P))_{(j,*)} \cong K^{a_{i,j}}$.

By a previous proposition both t and t-1 are non-zero-divisors on S as well on P, hence a previous lemma together with the same proposition imply:

- $(\operatorname{Ext}_{P}^{i}(S, P/tP))_{(j,*)} \cong (\operatorname{Ext}_{P/tP}^{i}(S/tS, P/tP))_{(j,*)}$, which is isomorphic to $(\operatorname{Ext}_{R}^{i}(R/\operatorname{in}_{w}(I), R))_{j}$.
- $(\operatorname{Ext}_{P}^{i}(S, P/(t-1)P))_{(j,*)} \cong (\operatorname{Ext}_{P/(t-1)P}^{i}(S/(t-1)S, P/(t-1)P))_{(j,*)},$ which is isomorphic to $(\operatorname{Ext}_{R}^{i}(R/I, R))_{j}.$

The thesis follows from this. For the local cohomology statement just observe that by Grothendieck graded duality $H^i_{\mathfrak{m}}(R/J)_j$ is dual as *K*-vector space to $\operatorname{Ext}_R^{n-i}(R/J,R)_{-|g|-j}$ for any *g*-homogeneous ideal $J \subset R$ and $i, j \in \mathbb{Z}$ (where $|g| = g_1 + \ldots + g_n$). \Box

Corollary

If I is a homogeneous ideal of R, then for all $i, j \in \mathbb{Z}$

 $\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) \leq \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}(I))_{j}).$

Next we want to show that, if $in_{<}(I)$ is squarefree, then we have equalities above. In order to do this, we will show that, if $in_{w}(I)$ is a squarefree monomial ideal, then $\text{Ext}^{i}(S, P)$ is a flat K[t]-module for all $i \in \mathbb{Z}$ (so that the numbers $b_{i,j}$ in the previous theorem would be 0 for all $i, j \in \mathbb{Z}$). Let us recall that a module is flat over a PID (such as K[t]) if and only if it has no torsion...