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Initial ideals with respect to weights

Fix w = (w1, . . . ,wn) ∈ Nn a weight vector. If µ = X u ∈ Mon(R)
with u = (u1, . . . , un) then we set w(µ) := w1u1 + . . .+ wnun. If
0 6= f ∈ R we set w(f ) := max{w(µ) : µ ∈ supp(f )} and

initw (f ) =
∑

µ∈supp(f )
w(µ)=w(f )

aµµ,

where f =
∑

µ∈supp(f ) aµµ.

Example

If w = (2, 1) and f = X 3 + 2X 2Y 2 − Y 5 ∈ Q[X ,Y ] then
initw (f ) = X 3 + 2X 2Y 2.

Given an ideal I ⊂ R we set inw (I ) = (initw (f ) : f ∈ I ) ⊂ R.
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Initial ideals with respect to weights

As we will see, the passage from an ideal I to inw (I ) can be seen as
a “continuous” degenerative process. Before explaining it, we will
show that, given a monomial order < on R and an ideal I ⊂ R, we
can always find a suitable w ∈ (N>0)n such that inw (I ) = in<(I ).

Example

Let us find a weight vector that picks the largest monomial in
every subset of monomials of degree ≤ d in K [X ,Y ,Z ] for the
lexicographic order determined by X > Y > Z . We give weight 1
to Z . Since Y > Zd , we give weight d + 1 to Y . Since X > Y d

and w(Y d) = d(d + 1), we must choose w(X ) = d(d + 1) + 1. It
is not hard to check that w = (d(d + 1) + 1, d + 1, 1) indeed
solves our problem.
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Initial ideals with respect to weights

Given w ∈ Nn and < a monomial order, we define another
monomial order on R as

µ<wν ⇐⇒

{
w(µ) < w(ν)

w(µ) = w(ν) and µ < ν
.

Lemma

For an ideal I ⊂ R, if inw (I ) ⊂ in<(I ) or inw (I ) ⊃ in<(I ), then
inw (I ) = in<(I ).

Proof: By applying in<(−) on both sides we get, for example,
in<w (I ) = in<(inw (I )) ⊃ in<(in<(I )) = in<(I ). So the equality
in<(inw (I )) = in<(in<(I )) must hold, and because inw (I ) ⊃ in<(I )
we must have inw (I ) = in<(I ). �
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Initial ideals with respect to weights

Lemma

Let P ⊂ Rn be the convex hull of some vectors u1, . . . , um ∈ Nn.
Then X u ≤ max{X u1 , . . . ,X um} for any u ∈ P ∩ Nn.

Proof: If u ∈ P ∩ Nn, then u =
∑m

i=1 λiu
i with λi ∈ Q≥0 and∑m

i=1 λi = 1. If λi = ai/bi with ai ∈ N, bi ∈ N \ {0}, then we have

bu =
m∑
i=1

a′iu
i ,

where b = b1 · · · bm and a′i = ai (b/bi ). If, by contradiction,

X u > X ui for all i = 1, . . . ,m, then

(X u)b > (X u1)a
′
1 · · · (X um)a

′
m

(because b =
∑m

i=1 a
′
i ) but this contradicts the fact that these two

monomials are the same. �
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Initial ideals with respect to weights

Proposition

Given a monomial order > on R and µi , νi ∈ Mon(R) such that
µi > νi for i = 1, . . . , k, there exists w ∈ (N>0)n such that
w(µi ) > w(νi ) ∀ i = 1, . . . , k . Consequently, given an ideal I ⊂ R
there exists w ∈ (N>0)n such that in<(I ) = inw (I ).

Proof: Notice that µi > νi ⇐⇒
∏

j µj > νi
∏

j 6=i µj and
w(µi ) > w(νi ) ⇐⇒ w(

∏
j µj) > w(νi

∏
j 6=i µj), so we can

assume that µi is the same monomial µ for all i = 1, . . . , k. If
µ = X u and νi = X v i

, consider C = u + (R≥0)n ⊂ Rn and P ⊂ Rn

the convex hull of u and v1, . . . , vk . We claim that C ∩ P = {u}.
Suppose that v ∈ C ∩ P. We can assume that v ∈ Qn, so that
there is N ∈ N big enough such that Nv ∈ N. Let ν = XNv . Since
v ∈ C , ν is divided by µN = XNu, so ν ≥ µN . On the other hand,
v ∈ P =⇒ Nv ∈ NP, so ν ≤ max{Nu,Nv i : i = 1, . . . , k} = Nu
by the previous lemma, so ν = µN , that is v = u.
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Initial ideals with respect to weights

Therefore there is a hyperplane passing through u separating C
and P, that is there is w ∈ (Rn)∗ such that

w(v) > w(u) > w(v i )

for all v ∈ C \ {u} and i = 1, . . . , k . Of course we can pick
w = (w1, . . . ,wn) ∈ Qn; furthermore the first inequalities yield
wi > 0 for all i = 1, . . . , n. After taking a suitable multiple, so, we
can assume w ∈ (N>0)n is our desired weight vector.

For the last part of the statement, let f1, . . . , fm be a Gröbner basis
of I . By the first part, there is w ∈ (N>0)n such that w(µ) > w(ν)
where µ = in(fi ) and ν ∈ supp(fi ) \ {µ} for all i = 1, . . . ,m. So
in<(I ) ⊂ inw (I ), hence in<(I ) = inw (I ). �
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Initial ideals with respect to weights

Let us extend R to P = R[t] by introducing a homogenizing
variable t. The w-homogenization of f =

∑
µ∈supp(f ) aµµ ∈ R is

homw (f ) =
∑

µ∈supp(f )

aµµt
w(f )−w(µ) ∈ P.

Example

Let f = X 2 − XY + Z 2 ∈ K [X ,Y ,Z ]. We have:

homw (f ) = X 2 − XY + Z 2t2 if w = (2, 2, 1).

homw (f ) = X 2 − XYt2 + Z 2t6 if w = (4, 2, 1).

Given an ideal I ⊂ R, homw (I ) ⊂ P denotes the ideal generated by
homw (f ) with f ∈ I . For its study, we extend the weight vector w
to w ′ on P by w ′(t) = 1, so that homw (I ) is a w ′-homogeneous
ideal of P, where the grading is deg(Xi ) = wi and deg(t) = 1.
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Initial ideals with respect to weights

Because P/ homw (I ) is a w ′-graded P-module, it is also a graded
K [t]-module (w.r.t. the standard grading on K [t]). So t − a is not
a zero-divisor on P/ homw (I ) for any a ∈ K \ {0}. We want to
show that also t is not a zero-divisor on P/ homw (I ) as well, and in
order to do so it is useful to consider the dehomogenization map:

π : P −→ R

F (X1, . . . ,Xn, t) 7→ F (X1, . . . ,Xn, 1).

Remark

1 π(homw (f )) = f ∀ f ∈ R. So, π(homw (I )) = I .

2 If F ∈ P \ tP is w ′-homogeneous, then homw (π(F )) = F ;
moreover, if r ∈ N and G = trF , homw (π(G ))tr = G .

Summarizing, for F ∈ P we have F ∈ homw (I ) ⇐⇒ π(F ) ∈ I .
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Proposition

Given an ideal I of R, the element t − a ∈ K [t] is not a zero
divisor on P/ homw (I ) for every a ∈ K . Furthermore:

P/
(
homw (I ) + (t)

) ∼= R/ inw (I ).

P/
(
homw (I ) + (t − a)

) ∼= R/I for all a ∈ K \ {0}.

Proof: For the first assertion, we need to show it just for a = 0:
Let F ∈ P such that tF ∈ homw (I ). Then π(tF ) ∈ I , so, since
π(F ) = π(tF ), F ∈ homw (I ).

For P/(homw (I ) + (t)) ∼= R/ inw (I ) it is enough to check that
homw (I ) + (t) = inw (I ) + (t). This is easily seen since for every
f ∈ R the difference homw (f )− initw (f ) is divisible by t.
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Initial ideals with respect to weights

To prove that P/(homw (I ) + (t − a)) ∼= R/I for every a ∈ K \ {0},
we consider the graded isomorphism ψ : R → R induced by
ψ(Xi ) = a−wiXi . Of course ψ(µ) = a−w(µ)µ ∀ µ ∈ Mon(R) and
homw (f )− aw(f )ψ(f ) is divisible by t − a for all f ∈ R. So
homw (I ) + (t − a) = ψ(I ) + (t − a), which implies the desired
isomorphism. �

Remark

Since a module over a PID is flat iff it has no torsion, the
proposition above says that P/ homw (I ) is a flat K [t]-module, and
that it defines a flat family over K [t] with generic fiber R/I and
special fiber R/ inw (I ).
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Initial ideals with respect to weights

Next we want to show that local cohomology cannot shrink
passing to the initial ideal. We need the following first:

Lemma

Let A be a ring, M,N A-modules and a ∈ ann(N) ⊂ A a
non-zero-divisor on M as well as on A. Then, for all i ≥ 0,

ExtiA(M,N) ∼= ExtiA/aA(M/aM,N).

Proof: Let F• be a free resolution of M. The Ext modules on the
left hand side are the cohomology modules of HomA(F•,N), which
is a complex of A-modules isomorphic to HomA/aA(F•/aF•,N)
because a annihilates N. However F•/aF• is a free resolution of
the A/aA-module M/aM since a is a non-zero-divisor on M as well
as on A, so the cohomology modules of the latter complex are the
Ext modules on the right hand side. �
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Initial ideals with respect to weights

Let us give a graded structure to R = K [X1, . . . ,Xn] by putting
deg(Xi ) = gi where g = (g1, . . . , gn) is a vector of positive integers
(so that m = (X1, . . . ,Xn) is the unique homogeneous maximal
ideal of R). If I ⊂ R is a g -homogeneous ideal, then homw (I ) ⊂ P
is homogeneous with respect to the bi-graded structure on P given
by deg(Xi ) = (gi ,wi ) and deg(t) = (0, 1). So S = P/ homw (I )
and ExtiP(S ,P) are finetely generated bi-graded P-modules.

Notice that, given a finitely generated bi-graded P-module M,
M(j ,∗) =

⊕
k∈ZM(j ,k) is a finitely generated graded (w.r.t. the

standard grading) K [t]-module for all j ∈ Z. Finally, if N is a
finitely generated K [t]-module, N ∼= K [t]a ⊕ T for a ∈ N and
some finitely generated torsion K [t]-module T (since K [t] is a
PID). If N is also graded, then T ∼=

⊕
k∈N>0

(K [t]/(tk))bk .
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From now, let us fix a g -homogeneous ideal I ⊂ R and denote
P/ homw (I ) by S . From the above discussion, for all i , j ∈ Z:

ExtiP(S ,P)(j ,∗) ∼= K [t]ai,j ⊕

 ⊕
k∈N>0

(K [t]/(tk))bi,j,k


for some natural numbers ai ,j and bi ,j ,k . Let bi ,j =

∑
k∈N>0

bi ,j ,k .

Theorem

With the above notation, for any i , j ∈ Z we have:

dimK (ExtiR(R/I ,R)j) = ai ,j .

dimK (ExtiR(R/ inw (I ),R)j) = ai ,j + bi ,j + bi+1,j .

In particular, dimK (ExtiR(R/I ,R)j) ≤ dimK (ExtiR(R/ inw (I ),R)j)
and dimK (H i

m(R/I )j) ≤ dimK (H i
m(R/ inw (I ))j).
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Proof: Letting x be t or t − 1 we have the short exact sequence

0→ P
·x−→ P → P/xP → 0.

The long exact sequence of ExtP(S ,−) associated to it, gives us
the following short exact sequences for all i ∈ Z:

0→ Cokerαi ,x → ExtiP(S ,P/xP)→ Kerαi+1,x → 0,

where αk,x is the multiplication by x on ExtkP(S ,P). We can
restrict the above exact sequences to the degree (j , ∗) for any
j ∈ Z getting:

0→ (Cokerαi ,x)(j ,∗) → (ExtiP(S ,P/xP))(j ,∗) → (Kerαi+1,x)(j ,∗) → 0.

Notice that we have:

(Cokerαi ,t)(j ,∗) ∼= K ai,j+bi,j and (Kerαi+1,t)(j ,∗) ∼= Kbi+1,j .

(Cokerαi ,t−1)(j ,∗) ∼= K ai,j and (Kerαi+1,t−1)(j ,∗) = 0.
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Therefore, for all i , j ∈ Z, we got:

(ExtiP(S ,P/tP))(j ,∗) ∼= K ai,j+bi,j+bi+1,j .

(ExtiP(S ,P/(t − 1)P))(j ,∗) ∼= K ai,j .

By a previous proposition both t and t − 1 are non-zero-divisors on
S as well on P, hence a previous lemma together with the same
proposition imply:

(ExtiP(S ,P/tP))(j,∗) ∼= (ExtiP/tP(S/tS ,P/tP))(j,∗), which is

isomorphic to (ExtiR(R/ inw (I ),R))j .

(ExtiP(S ,P/(t − 1)P))(j,∗) ∼= (ExtiP/(t−1)P(S/(t − 1)S ,P/(t − 1)P))(j,∗),

which is isomorphic to (ExtiR(R/I ,R))j .

The thesis follows from this. For the local cohomology statement
just observe that by Grothendieck graded duality H i

m(R/J)j is dual
as K -vector space to Extn−iR (R/J,R)−|g |−j for any g -homogeneous
ideal J ⊂ R and i , j ∈ Z (where |g | = g1 + . . .+ gn). �
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Corollary

If I is a homogeneous ideal of R, then for all i , j ∈ Z

dimK (H i
m(R/I )j) ≤ dimK (H i

m(R/ in(I ))j).

Next we want to show that, if in<(I ) is squarefree, then we have
equalities above. In order to do this, we will show that, if inw (I ) is
a squarefree monomial ideal, then Exti (S ,P) is a flat K [t]-module
for all i ∈ Z (so that the numbers bi ,j in the previous theorem
would be 0 for all i , j ∈ Z). Let us recall that a module is flat over
a PID (such as K [t]) if and only if it has no torsion...

Matteo Gröbner deformations


