Gröbner deformations

Matteo Varbaro (University of Genoa, Italy)

CIME-CIRM Course on Recent Developments in Commutative Algebra Levico Terme, 1-5/7/2019

- $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- K any field.
- $R = K[X_1, ..., X_n]$ the polynomial ring in *n* variables over *K*.
- A monomial of R is an element $X^u := X_1^{u_1} \cdots X_n^{u_n} \in R$, where $u = (u_1, \dots, u_n) \in \mathbb{N}^n$.
- Mon(R) is the set of monomials of R.
- A *term* of R is an element of the form aµ ∈ R where a ∈ K and µ is a monomial.

Notice that every $f \in R$ can be written as a sum of terms: there exists a unique (finite) subset $supp(f) \subset Mon(R)$ such that:

$$f = \sum_{\mu \in {
m supp}(f)} a_\mu \mu, \qquad a_\mu \in K \setminus \{0\}.$$

In the above representation, the only lack of uniqueness is the order of the terms.

Definition

A monomial order on R is a total order < on Mon(R) such that:

(i)
$$1 \le \mu$$
 for every $\mu \in Mon(R)$;

(ii) If $\mu_1, \mu_2, \nu \in Mon(R)$ such that $\mu_1 \leq \mu_2$, then $\mu_1 \nu \leq \mu_2 \nu$.

Notice that, if < is a monomial order on R and μ,ν are monomials such that $\mu|\nu,$ then $\mu\leq\nu:$ indeed $1\leq\nu/\mu,$ so

$$\mu = 1 \cdot \mu \leq (\nu/\mu) \cdot \mu = \nu.$$

Typical examples of monomial orders are the following: given monomials $\mu = X_1^{u_1} \cdots X_n^{u_n}$ and $\nu = X_1^{v_1} \cdots X_n^{v_n}$ we define:

- The *lexicographic order* (Lex) by μ <_{Lex} ν iff u_k < v_k for some k and u_i = v_i for any i < k.
- The degree lexicographic order (DegLex) by μ <_{DegLex} ν iff deg(μ) < deg(ν) or deg(μ) = deg(ν) and μ <_{Lex} ν.
- The (degree) reverse lexicographic order (RevLex) by $\mu <_{\text{RevLex}} \nu$ iff deg(μ) < deg(ν) or deg(μ) = deg(ν) and $u_k > v_k$ for some k and $u_i = v_i$ for any i > k.

Example

In
$$K[X, Y, Z]$$
, assuming $X > Y > Z$, we have
 $X^2 >_{\text{Lex}} XZ >_{\text{Lex}} Y^2$, while $X^2 >_{\text{RevLex}} Y^2 >_{\text{RevLex}} XZ$.

Proposition

A monomial order on R is a well-order on Mon(R). That is, any nonempty subset of Mon(R) has a minimum. Equivalently, all descending chains of monomials in R terminate.

Proof. Let $\emptyset \neq N \subset Mon(R)$, and $I \subset R$ be the ideal generated by N. By Hilbert basis theorem, I is generated by a finite number of monomials of N. Since a monomial order refines divisibility, the minimum of such finitely many monomials is also the minimum of N. \Box

From now on, we fix a monomial order < on R, so that every polynomial $0 \neq f \in R$ can be written uniquely as

$$f = a_1 \mu_1 + \ldots + a_k \mu_k$$

with $a_i \in K \setminus \{0\}$, $\mu_i \in Mon(R)$ and $\mu_1 > \mu_2 > \ldots > \mu_k$.

Definition

The *initial monomial* of f is $in(f) = \mu_1$. Furthermore, its *initial coefficient* is $inic(f) = a_1$ and its *initial term* is $init(f) = a_1\mu_1$.

Notice that, for all $f, g \in R$:

- $\operatorname{inic}(f)\operatorname{in}(f) = \operatorname{init}(f)$.
- in(fg) = in(f)in(g).
- $in(f+g) \le max\{in(f), in(g)\}.$

Example

If
$$f = X_1 + X_2 X_4 + X_3^2$$
, we have:

- $in(f) = X_1$ with respect to Lex.
- $in(f) = X_2 X_4$ with respect to DegLex.
- $in(f) = X_3^2$ with respect to RevLex.

Example

If
$$f = X^2 + XY + Y^2 \in K[X, Y]$$
, then we have:

•
$$in(f) = X^2$$
 if $X > Y$.

•
$$in(f) = Y^2$$
 if $Y > X$.

In particular, $XY \neq in(f)$ for all monomial orders.

Gröbner bases and Buchberger algorithm

Definition

If I is an ideal of R, then the monomial ideal $in(I) \subset R$ generated by $\{in(f) : f \in I\}$ is named the *initial ideal* of I.

Definition

Polynomials f_1, \ldots, f_m of an ideal $I \subset R$ are a *Gröbner basis* of I if $in(I) = (in(f_1), \ldots, in(f_m))$.

Example

Consider the ideal $I = (f_1 = X^2 - Y^2, f_2 = XZ - Y^2)$ of K[X, Y, Z]. For Lex with X > Y > Z the polynomials f_1, f_2 are not a Gröbner basis of I, indeed $XY^2 = in(Zf_1 - Xf_2)$ is a monomial of in(I) which is not in $(in(f_1) = X^2, in(f_2) = XZ)$. For RevLex with X > Y > Z, it turns out that $in(I) = (X^2, Y^2)$, so f_1 and f_2 are a Gröbner basis of I in this case.

Remark

The Noetherianity of R implies that any ideal in R has a finite Gröbner basis.

There is a way to compute a Gröbner basis of an ideal *I* starting from a system of generators of *I*, namely the *Buchsberger algorithm*; it also checks if such a system of generators is already a Gröbner basis. We will develop the algorithm in the next few slides:

Definition

Let $f_1, \ldots, f_m \in R$. A polynomial $r \in R$ is a reduction of $g \in R$ modulo f_1, \ldots, f_m if there exist $q_1, \ldots, q_m \in R$ satisfying:

•
$$g = q_1 f_1 + \ldots + q_m f_m + r;$$

•
$$\operatorname{in}(q_i f_i) \leq \operatorname{in}(g)$$
 for all $i = 1, \dots, m$;

• For all i = 1, ..., m, $in(f_i)$ does not divide $\mu \forall \mu \in supp(r)$.

Lemma

Let $f_1, \ldots, f_m \in R$. Every polynomial $g \in R$ admits a reduction modulo f_1, \ldots, f_m .

Proof: Let $J = (in(f_1), ..., in(f_m))$. We start with r = g and apply the *reduction algorithm*:

- (1) If supp $(r) \cap J = \emptyset$, we are done: r is the desired reduction.
- (2) Otherwise choose μ ∈ supp(r) ∩ J and let b ∈ K be the coefficient of μ in the monomial representation of r. Choose i such that in(f_i) | μ and set r' = r − aνf_i where ν = μ/in(f_i) and a = b/inic(f_i). Then replace r by r' and go to (1).

This algorithm terminates after finitely many steps since it replaces the monomial μ by a linear combination of monomials that are smaller in the monomial order, and all descending chains of monomials in R terminate. \Box

Example

Once again, we take R = K[X, Y, Z], $f_1 = X^2 - Y^2$ and $f_2 = XZ - Y^2$, and we consider Lex with X > Y > Z. Set $g = X^2Z$. Then $g = Zf_1 + Y^2Z$, but $g = Xf_2 + XY^2$ as well. Both these equations yield reductions of g, namely XY^2 and Y^2Z . Thus a polynomial can have several reductions modulo f_1, f_2 .

The reduction of $g \in R$ modulo f_1, \ldots, f_m is unique when f_1, \ldots, f_m is a Gröbner basis...

Proposition

Let I be an ideal of R, $f_1, \ldots, f_m \in I$ and $J = (in(f_1), \ldots, in(f_m))$. Then the following are equivalent:

- (a) f_1, \ldots, f_m form a Gröbner basis of *I*;
- (b) every $g \in I$ reduces to 0 modulo f_1, \ldots, f_m ;
- (c) the monomials μ , $\mu \notin J$, are linearly independent modulo I.

If the equivalent conditions (a), (b), (c) hold, then:

- (d) Every element of R has a unique reduction modulo f_1, \ldots, f_m .
- (e) The reduction depends only on I and the monomial order.

Proof: Check (a) \implies (c) \implies (b) as an exercise.

(b) \implies (a) Let $g \in I$, $g \neq 0$. If g reduces to 0, then we have

$$g=q_1f_1+\cdots+q_mf_m$$

such that $in(q_i f_i) \leq in(g)$ for all *i*. But the monomial in(g) must appear on the right hand side as well, and this is only possible if $in(g) = in(q_i f_i) = in(q_i) in(f_i)$ for at least one *i*. In other words, in(g) must be divisible by $in(f_i)$ for some *i*. Hence in(I) = J.

Check (c) \implies (d), (e) as an exercise. \Box

Corollary

If f_1, \ldots, f_m is a Gröbner basis of an ideal $I \subset R$ then $I = (f_1, \ldots, f_m)$.

Corollary

Let $I \subset R$ be an ideal and $<_1, <_2$ monomial orders of R. If $in_{<_1}(I) \subset in_{<_2}(I)$, then $in_{<_1}(I) = in_{<_2}(I)$.

Proof. By the previous proposition, the sets A_i of monomials of R not in $in_{\leq_i}(I)$ are K-bases of R/I for each i = 1, 2. Since $A_1 \supset A_2$, we must have $A_1 = A_2$. \Box

Corollary

Let $I_1, I_2 \subset R$ be ideals and < a monomial order of R. If $I_1 \subset I_2$ and $in_<(I_1) = in_<(I_2)$, then $I_1 = I_2$.

Proof. By the previous proposition, the set A of monomials of R not in $in_{\leq}(I_1) = in_{\leq}(I_2)$ are K-bases of R/I_i for each i = 1, 2. Since $I_1 \subset I_2$, we must have $I_1 = I_2$. \Box

Definition

The *S*-polynomial of two elements $f, g \in R$ is defined as

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{in}(f),\operatorname{in}(g))}{\operatorname{init}(f)}f - \frac{\operatorname{lcm}(\operatorname{in}(f),\operatorname{in}(g))}{\operatorname{init}(g)}g$$

Proposition

Let $f_1, \ldots, f_m \in R$ and $I = (f_1, \ldots, f_m)$. Then the following are equivalent:

(a) f_1, \ldots, f_m form a Gröbner basis of *I*.

(b) For all $1 \le i < j \le m$, $S(f_i, f_j)$ reduces to 0 modulo f_1, \ldots, f_m .

Proof. (a) \implies (b): It follows since $S(f_i, f_j) \in I$.

Gröbner bases and Buchberger algorithm

(b) \implies (a): We need to show that every $g \in I$ reduces to 0 modulo the f_k 's. Since $g \in I$, we have $g = a_1 f_1 + \ldots + a_m f_m$ for some $a_k \in R$. Among such representations, we can choose one minimizing $\mu := \max\{in(a_i f_i) : i = 1, \ldots, m\}$ and, among these, minimizing $s := |\{i = 1, \ldots, m| in(a_i f_i) = \mu\}|$. By contradiction, suppose $\mu > in(g)$. In this case $s \ge 2$, so there exist i < j such that $in(a_i f_i) = in(a_j f_j) = \mu$. Set $c := inic(a_i f_i)$ and notice that $\mu = \nu \cdot lcm(in(f_i), in(f_j))$ for some $\nu \in Mon(R)$. Let

 $S(f_i, f_j) = q_1 f_1 + \ldots + q_m f_m$

the reduction of $S(f_i, f_j)$ (so that $in(q_k f_k) \leq in(S(f_i, f_j))$ which is less than $\alpha_{ij} := lcm(in(f_i), in(f_j))$ for all k). From this we get a representation $g = a'_1 f_1 + \ldots + a'_m f_m$ contradicting the minimality of μ and s where $a'_i = a_i - \frac{c\nu\alpha_{ij}}{init(f_i)} + c\nu q_i$, $a'_j = a_j + \frac{c\nu\alpha_{ij}}{init(f_j)} + c\nu q_j$ and $a'_k = a_k + c\nu q_k$ for $i \neq k \neq j$. \Box