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Notation and basic definitions

N = {0, 1, 2, . . .}.
K any field.

R = K [X1, . . . ,Xn] the polynomial ring in n variables over K .

A monomial of R is an element X u := X u1
1 · · ·X un

n ∈ R, where
u = (u1, . . . , un) ∈ Nn.

Mon(R) is the set of monomials of R.

A term of R is an element of the form aµ ∈ R where a ∈ K
and µ is a monomial.

Notice that every f ∈ R can be written as a sum of terms: there
exists a unique (finite) subset supp(f ) ⊂ Mon(R) such that:

f =
∑

µ∈supp(f )

aµµ, aµ ∈ K \ {0}.
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Notation and basic definitions

In the above representation, the only lack of uniqueness is the
order of the terms.

Definition

A monomial order on R is a total order < on Mon(R) such that:

(i) 1 ≤ µ for every µ ∈ Mon(R);

(ii) If µ1, µ2, ν ∈ Mon(R) such that µ1 ≤ µ2, then µ1ν ≤ µ2ν.

Notice that, if < is a monomial order on R and µ, ν are monomials
such that µ|ν, then µ ≤ ν: indeed 1 ≤ ν/µ, so

µ = 1 · µ ≤ (ν/µ) · µ = ν.
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Notation and basic definitions

Typical examples of monomial orders are the following: given
monomials µ = X u1

1 · · ·X un
n and ν = X v1

1 · · ·X vn
n we define:

The lexicographic order (Lex) by µ <Lex ν iff uk < vk for
some k and ui = vi for any i < k.

The degree lexicographic order (DegLex) by µ <DegLex ν iff
deg(µ) < deg(ν) or deg(µ) = deg(ν) and µ <Lex ν.

The (degree) reverse lexicographic order (RevLex) by
µ <RevLex ν iff deg(µ) < deg(ν) or deg(µ) = deg(ν) and
uk > vk for some k and ui = vi for any i > k .

Example

In K [X ,Y ,Z ], assuming X > Y > Z , we have
X 2 >Lex XZ >Lex Y

2, while X 2 >RevLex Y
2 >RevLex XZ .
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Notation and basic definitions

Proposition

A monomial order on R is a well-order on Mon(R). That is, any
nonempty subset of Mon(R) has a minimum. Equivalently, all
descending chains of monomials in R terminate.

Proof: Let ∅ 6= N ⊂ Mon(R), and I ⊂ R be the ideal generated by
N. By Hilbert basis theorem, I is generated by a finite number of
monomials of N. Since a monomial order refines divisibility, the
minimum of such finitely many monomials is also the minimum of
N. �
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Notation and basic definitions

From now on, we fix a monomial order < on R, so that every
polynomial 0 6= f ∈ R can be written uniquely as

f = a1µ1 + . . .+ akµk

with ai ∈ K \ {0}, µi ∈ Mon(R) and µ1 > µ2 > . . . > µk .

Definition

The initial monomial of f is in(f ) = µ1. Furthermore, its initial
coefficient is inic(f ) = a1 and its initial term is init(f ) = a1µ1.

Notice that, for all f , g ∈ R:

inic(f ) in(f ) = init(f ).

in(fg) = in(f ) in(g).

in(f + g) ≤ max{in(f ), in(g)}.
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Notation and basic definitions

Example

If f = X1 + X2X4 + X 2
3 , we have:

in(f ) = X1 with respect to Lex.

in(f ) = X2X4 with respect to DegLex.

in(f ) = X 2
3 with respect to RevLex.

Example

If f = X 2 + XY + Y 2 ∈ K [X ,Y ], then we have:

in(f ) = X 2 if X > Y .

in(f ) = Y 2 if Y > X .

In particular, XY 6= in(f ) for all monomial orders.
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Gröbner bases and Buchberger algorithm

Definition

If I is an ideal of R, then the monomial ideal in(I ) ⊂ R generated
by {in(f ) : f ∈ I} is named the initial ideal of I .

Definition

Polynomials f1, . . . , fm of an ideal I ⊂ R are a Gröbner basis of I if
in(I ) = (in(f1), . . . , in(fm)).

Example

Consider the ideal I = (f1 = X 2 − Y 2, f2 = XZ − Y 2) of
K [X ,Y ,Z ]. For Lex with X > Y > Z the polynomials f1, f2 are
not a Gröbner basis of I , indeed XY 2 = in(Zf1 − Xf2) is a
monomial of in(I ) which is not in (in(f1) = X 2, in(f2) = XZ ). For
RevLex with X > Y > Z , it turns out that in(I ) = (X 2,Y 2), so f1
and f2 are a Gröbner basis of I in this case.
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Gröbner bases and Buchberger algorithm

Remark

The Noetherianity of R implies that any ideal in R has a finite
Gröbner basis.

There is a way to compute a Gröbner basis of an ideal I starting
from a system of generators of I , namely the Buchsberger
algorithm; it also checks if such a system of generators is already a
Gröbner basis. We will develop the algorithm in the next few slides:

Definition

Let f1, . . . , fm ∈ R. A polynomial r ∈ R is a reduction of g ∈ R
modulo f1, . . . , fm if there exist q1, . . . , qm ∈ R satisfying:

g = q1f1 + . . .+ qmfm + r ;

in(qi fi ) ≤ in(g) for all i = 1, . . . ,m;

For all i = 1, . . . ,m, in(fi ) does not divide µ ∀ µ ∈ supp(r).
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Gröbner bases and Buchberger algorithm

Lemma

Let f1, . . . , fm ∈ R. Every polynomial g ∈ R admits a reduction
modulo f1, . . . , fm.

Proof: Let J = (in(f1), . . . , in(fm)). We start with r = g and apply
the reduction algorithm:

(1) If supp(r) ∩ J = ∅, we are done: r is the desired reduction.

(2) Otherwise choose µ ∈ supp(r) ∩ J and let b ∈ K be the
coefficient of µ in the monomial representation of r . Choose i
such that in(fi ) | µ and set r ′ = r − aνfi where ν = µ/ in(fi )
and a = b/ inic(fi ). Then replace r by r ′ and go to (1).

This algorithm terminates after finitely many steps since it replaces
the monomial µ by a linear combination of monomials that are
smaller in the monomial order, and all descending chains of
monomials in R terminate. �
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Gröbner bases and Buchberger algorithm

Example

Once again, we take R = K [X ,Y ,Z ], f1 = X 2 − Y 2 and
f2 = XZ − Y 2, and we consider Lex with X > Y > Z . Set
g = X 2Z . Then g = Zf1 + Y 2Z , but g = Xf2 + XY 2 as well.
Both these equations yield reductions of g , namely XY 2 and Y 2Z .
Thus a polynomial can have several reductions modulo f1, f2.

The reduction of g ∈ R modulo f1, . . . , fm is unique when
f1, . . . , fm is a Gröbner basis...
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Gröbner bases and Buchberger algorithm

Proposition

Let I be an ideal of R, f1, . . . , fm ∈ I and J = (in(f1), . . . , in(fm)).
Then the following are equivalent:

(a) f1, . . . , fm form a Gröbner basis of I ;

(b) every g ∈ I reduces to 0 modulo f1, . . . , fm;

(c) the monomials µ, µ /∈ J, are linearly independent modulo I .

If the equivalent conditions (a), (b), (c) hold, then:

(d) Every element of R has a unique reduction modulo f1, . . . , fm.

(e) The reduction depends only on I and the monomial order.

Proof: Check (a) =⇒ (c) =⇒ (b) as an exercise.
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Gröbner bases and Buchberger algorithm

(b) =⇒ (a) Let g ∈ I , g 6= 0. If g reduces to 0, then we have

g = q1f1 + · · ·+ qmfm

such that in(qi fi ) ≤ in(g) for all i . But the monomial in(g) must
appear on the right hand side as well, and this is only possible if
in(g) = in(qi fi ) = in(qi ) in(fi ) for at least one i . In other words,
in(g) must be divisible by in(fi ) for some i . Hence in(I ) = J.

Check (c) =⇒ (d), (e) as an exercise. �

Corollary

If f1, . . . , fm is a Gröbner basis of an ideal I ⊂ R then
I = (f1, . . . , fm).
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Gröbner bases and Buchberger algorithm

Corollary

Let I ⊂ R be an ideal and <1, <2 monomial orders of R. If
in<1(I ) ⊂ in<2(I ), then in<1(I ) = in<2(I ).

Proof: By the previous proposition, the sets Ai of monomials of R
not in in<i (I ) are K -bases of R/I for each i = 1, 2. Since A1 ⊃ A2,
we must have A1 = A2. �

Corollary

Let I1, I2 ⊂ R be ideals and < a monomial order of R. If I1 ⊂ I2
and in<(I1) = in<(I2), then I1 = I2.

Proof: By the previous proposition, the set A of monomials of R
not in in<(I1) = in<(I2) are K -bases of R/Ii for each i = 1, 2.
Since I1 ⊂ I2, we must have I1 = I2. �
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Gröbner bases and Buchberger algorithm

Definition

The S-polynomial of two elements f , g ∈ R is defined as

S(f , g) =
lcm(in(f ), in(g))

init(f )
f − lcm(in(f ), in(g))

init(g)
g

Proposition

Let f1, . . . , fm ∈ R and I = (f1, . . . , fm). Then the following are
equivalent:

(a) f1, . . . , fm form a Gröbner basis of I .

(b) For all 1 ≤ i < j ≤ m, S(fi , fj) reduces to 0 modulo f1, . . . , fm.

Proof: (a) =⇒ (b): It follows since S(fi , fj) ∈ I .
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Gröbner bases and Buchberger algorithm

(b) =⇒ (a): We need to show that every g ∈ I reduces to 0
modulo the fk ’s. Since g ∈ I , we have g = a1f1 + . . .+ amfm for
some ak ∈ R. Among such representations, we can choose one
minimizing µ := max{in(ai fi ) : i = 1, . . . ,m} and, among these,
minimizing s := |{i = 1, . . . ,m| in(ai fi ) = µ}|. By contradiction,
suppose µ > in(g). In this case s ≥ 2, so there exist i < j such
that in(ai fi ) = in(aj fj) = µ. Set c := inic(ai fi ) and notice that
µ = ν · lcm(in(fi ), in(fj)) for some ν ∈ Mon(R). Let

S(fi , fj) = q1f1 + . . .+ qmfm

the reduction of S(fi , fj) (so that in(qk fk) ≤ in(S(fi , fj)) which is
less than αij := lcm(in(fi ), in(fj)) for all k). From this we get a
representation g = a′1f1 + . . .+ a′mfm contradicting the minimality
of µ and s where a′i = ai −

cναij

init(fi )
+ cνqi , a

′
j = aj +

cναij

init(fj )
+ cνqj

and a′k = ak + cνqk for i 6= k 6= j . �
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