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APPENDIX

Symmetric vs divided powers. Let V denote a free module of finite rank over a ring k, and for d > 0
consider the tensor power T4V := V¥ = V@V ®---® V with the natural action of the symmetric group
G4 by permuting the factors. The divided power DV is defined as the set of symmetric tensors in 79V,
that is,

DAV = {w e TW : o(w) = w for all 0 € &4}.
If we consider the subspace of T%V defined by

¥4 := Span{o(w) —w:0 € G4 and w € TV},

then the symmetric power Sym?V is defined as the quotient Sym?V := T?9V/S,. If V has a basis
(x1,...,2y,), then Sym? V identifies with the space of homogeneous polynomials of degree d in 1, . . ., zp,
and as such it has a basis of monomials x{' - -- 2% where aj + - - + a,, = d. To get a basis for DYV we

first consider the orbits
Oa1,...7an =6, 33(18)&1 & -775@&2 K- ® ﬂcga"

and for a; + - - - + a,, = d consider the divided power monomials
xgal) . -a:g“") = Z w.

They form a basis for D4(V), and in particular we have that dim(Sym?V) = dim(D? V). By composing

the inclusion of D?V into TV with the projection onto Sym?V we obtain a natural map

n n

D4V — Sym?V, x&al)---x(a")H<a d a)a:(fl'--x“” where <a d a)z'. (23)
1yeveyQp 1y--,0Qp et Gyt

This map is an isomorphism when the multinomial coefficients are invertible (for instance, when k is a
field with char(k) = 0 or char(k) > d). In general it is neither injective, nor surjective. There is a natural
Gy -invariant perfect pairing
TYV) x THVY) — k, (24)
defined on pure tensors via
(1@ ®ug, L @+ ® fa) = fi(v) f2(v2) - -~ fa(va), where v; € V and f; € V.

This induces a perfect pairing between Sym? V' and DY(VV), giving a natural identification

(Sym? V)Y = DYVVY).
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The construction of tensor, symmetric and divided powers is functorial, so it can be applied to any
locally free sheaf £ on a variety X. It follows from the discussion above that when char(k) > d we
have Sym?(&) ~ D4(€), and the inclusion D¥(&) < T?(&) is split. In arbitrary characteristic, we have
(Sym? &)Y ~ DU(EY), where £V = o, (€,0x).

The Eagon—Northcott and Koszul complexes. Suppose that F, G are free modules over a ring R,
with rank(F') = n, rank(G) = m, n > m, and consider an R-linear map a : F — G. The Eagon-
Northcott complex of the map « is denoted EN,4(«), and its terms are given by

m +m—1
ENj(a) = /\G, EN;(a) = /\ FoD Y (GY)fori=1,---,n—m+ 1.

The differential d; : EN; — EN;_; is constructed as follows. The first map is dy = A" «, and for ¢ > 2,
d; is given by

i+m—1 . i+m—2 . i+m—2 .
/\ FeD 1(GY) — ( N\ Fo F> ® (DG 06) — N FeD*GY),
where the first map is induced by the natural inclusions, and the second one is induced by

a € Homg(F,G) = FY ® G = Homg(F @ G¥, R).

If « is surjective then ENg () is an exact complex.

If we choose bases for F' and G, then « is expressed by a m x n matrix, and A" « is given by a one-row
matrix whose entries are the m x m minors of a. Writing [,,,(«) for the ideal they generate, it follows
that coker(d;) ~ S/I,(a). Suppose that R is a standard graded polynomial ring, that F,G are graded
R-modules, and that « is a degree preserving map and it is minimal (that is, it has entries in the maximal
homogeneous ideal). Under suitable genericity assumptions, such as codim(/,,,(«)) =n—m+ 1, ENg(«)
gives a minimal resolution of S/I,,(«).

The complex obtained in the special case m = 1 is called a Koszul complex, and is denoted Kq(c).
The condition that codim(I,,(«)) = n —m + 1 is then equivalent to the requirement that the entries
of a form a regular sequence, which is the familiar condition characterizing the exactness of the Koszul
complex.

By functoriality, one can perform similar constructions in the relative setting, when F, G are replaced
by locally free sheaves F,G on a variety X. If « is surjective then EN4 (), as remarked in the absolute
setting.

The examples of interest for us are those coming from a rational normal curve, respectively from a

rational normal scroll. If R = S = k[zg,--- ,24], m = 2, n = g and «a is given by the matrix Z in (2),
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then n —m +1 = g — 1 is the codimension of I'j in P9, and the corresponding Eagon-Northcott complex

gives a minimal resolution of S/I(«).

Exercise 24. Choose bases and write down explicitly the Eagon—Northcott complex for the rational

normal curves of degree g = 3 and g = 4.

For ay,--- ,aq > 1, a rational normal scroll of type (a1, a2, - ,aq) is defined by the 2 x 2 minors of a

matrix obtained by concatenating matrices of the form (2) in different sets of variables:

1,0 T1,1 - Tlai—1 Tdo Tdi1 - Ldag—1
A(ala e 7ad) =
r1,1 T2 T1,aq Td1 Td2 - Td,aq
The resulting scroll has dimension d and is a subvariety in P41+ +2+d=1_Note that the matrix A(ay,-- - ,aq)

gives a map between free modules of ranks n = a; + -+ + ag and m = 2, so n — m + 1 is precisely the
codimension of the scroll, and the Eagon—Northcott complex is again exact. The case of the rational

normal curve of degree g can be recovered by taking d =1 and a; = g.

Exercise 25. Verify that the columns of the matrices (6) (resp. (10)) can be rearranged in such a way

that they agree, after a relabelling, with scrollar matrices A(ai, a2) (resp. A(a1,--- ,ap)).

The Buchsbaum—Rim complex. We continue with the notation from the previous section. The
Buchsbaum—Rim complex associated with the map o : F — G is denoted BR4 (), and its terms are
given by
i+tm—1
BRy(a) =G, BRi(a) =F, BRi(a) = [\ F®det(GY) @D *(GY) fori=2,-- ,n—m+1
The first differential is d; = «, while the second one is obtained by composing

m+1 m

N Fe\G — (7\F®F>®7\Gv—>F

where the first map is the natural inclusion, while the second one is induced by
/\a € Homp (/\F,/\G) = Hompg (/\F@/\GV,R> .

The higher differentials are defined in analogy with the ones for the Eagon—Northcott complex. Just
like in the case of the Eagon—Northcott complex, when « is surjective the complex BR,4 () is exact. A

similar statement holds if we replace F, G by locally free sheaves.
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Cohomology of line bundles on projective space, and Castelnuovo—-Mumford regularity. Let
V be an n-dimensional vector space over ome field k. Let P = P(VY) denote the projective space
parametrizing one-dimensional subspaces of V'V, so that H(P,Op(1)) = V. We have

Sym(V) d>0;

0 d < 0.

H(P,0p(d)) =

Sym™ (V)Y =D~ (V) d< —m
0 d> —n.
H'(P,0p(d))=0forallde€Z, i #0 and i #n — 1.

A coherent sheaf F on P is d-regular if H(P,F(d —i)) = 0 for i > 0. It follows from the cohomological
calculations above that for any d € Z, the sheaf F = Op(—d) is d-regular.

H" YP,0p(d) =

In general, we have that F is d-regular if and only if it admits a resolution F, where F; ~ @ Op(—d—i).
More generally, F is d-regular if it admits a resolution F, where F; is (d + i)-regular. If F = F' & F”
then F is d-regular if and only if both ', 7 are d-regular. If £ is a locally free sheaf which is e-regular,
and if F is d-regular, then the tensor product F ® £ is (d + e)-regular.



