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Appendix

Symmetric vs divided powers. Let V denote a free module of finite rank over a ring k, and for d > 0

consider the tensor power T dV := V ⌦d = V ⌦V ⌦ · · ·⌦V with the natural action of the symmetric group

Sd by permuting the factors. The divided power Dd V is defined as the set of symmetric tensors in T dV ,

that is,

Dd V := {! 2 T dV : �(!) = ! for all � 2 Sd}.

If we consider the subspace of T dV defined by

⌃d := Span{�(!)� ! : � 2 Sd and ! 2 T dV },

then the symmetric power Symd V is defined as the quotient Symd V := T dV/⌃d. If V has a basis

(x1, . . . , xn), then Symd V identifies with the space of homogeneous polynomials of degree d in x1, . . . , xn,

and as such it has a basis of monomials xa1
1

· · ·xann , where a1 + · · ·+ an = d. To get a basis for DdV we

first consider the orbits

Oa1,...,an := Sd · x
⌦a1
1

⌦ x⌦a2
2

⌦ · · ·⌦ x⌦an
n

and for a1 + · · ·+ an = d consider the divided power monomials

x(a1)
1

· · ·x(an)n :=
X

!2Oa1,...,an

!.

They form a basis for Dd(V ), and in particular we have that dim(Symd V ) = dim(Dd V ). By composing

the inclusion of Dd V into T dV with the projection onto Symd V we obtain a natural map

Dd V �! Symd V, x(a1)
1

· · ·x(an)n 7!

✓
d

a1, . . . , an

◆
xa1
1

· · ·xann , where

✓
d

a1, . . . , an

◆
=

d!

a1! · · · an!
. (23)

This map is an isomorphism when the multinomial coe�cients are invertible (for instance, when k is a

field with char(k) = 0 or char(k) > d). In general it is neither injective, nor surjective. There is a natural

Sn-invariant perfect pairing

T d(V )⇥ T d(V _) �! k, (24)

defined on pure tensors via

hv1 ⌦ · · ·⌦ vd, f1 ⌦ · · ·⌦ fdi = f1(v1)f2(v2) · · · fd(vd), where vi 2 V and fj 2 V _.

This induces a perfect pairing between Symd V and Dd(V _), giving a natural identification

(Symd V )_ ⇠= Dd(V _).
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The construction of tensor, symmetric and divided powers is functorial, so it can be applied to any

locally free sheaf E on a variety X. It follows from the discussion above that when char(k) > d we

have Symd(E) ' Dd(E), and the inclusion Dd(E) ,! T d(E) is split. In arbitrary characteristic, we have

(Symd
E)_ ' Dd(E_), where E

_ = HomOX (E ,OX).

The Eagon–Northcott and Koszul complexes. Suppose that F,G are free modules over a ring R,

with rank(F ) = n, rank(G) = m, n � m, and consider an R-linear map ↵ : F �! G. The Eagon–

Northcott complex of the map ↵ is denoted EN•(↵), and its terms are given by

EN0(↵) =
m^

G, ENi(↵) =
i+m�1^

F ⌦Di�1(G_) for i = 1, · · · , n�m+ 1.

The di↵erential di : ENi �! ENi�1 is constructed as follows. The first map is d1 =
V

m ↵, and for i � 2,

di is given by

i+m�1^
F ⌦Di�1(G_) �!

 
i+m�2^

F ⌦ F

!
⌦ (Di�2(G_)⌦G_) �!

i+m�2^
F ⌦Di�2(G_),

where the first map is induced by the natural inclusions, and the second one is induced by

↵ 2 HomR(F,G) = F_
⌦G = HomR(F ⌦G_, R).

If ↵ is surjective then EN•(↵) is an exact complex.

If we choose bases for F and G, then ↵ is expressed by a m⇥n matrix, and
V

m ↵ is given by a one-row

matrix whose entries are the m ⇥ m minors of ↵. Writing Im(↵) for the ideal they generate, it follows

that coker(d1) ' S/Im(↵). Suppose that R is a standard graded polynomial ring, that F,G are graded

R-modules, and that ↵ is a degree preserving map and it is minimal (that is, it has entries in the maximal

homogeneous ideal). Under suitable genericity assumptions, such as codim(Im(↵)) = n�m+1, EN•(↵)

gives a minimal resolution of S/Im(↵).

The complex obtained in the special case m = 1 is called a Koszul complex, and is denoted K•(↵).

The condition that codim(Im(↵)) = n � m + 1 is then equivalent to the requirement that the entries

of ↵ form a regular sequence, which is the familiar condition characterizing the exactness of the Koszul

complex.

By functoriality, one can perform similar constructions in the relative setting, when F,G are replaced

by locally free sheaves F ,G on a variety X. If ↵ is surjective then EN•(↵), as remarked in the absolute

setting.

The examples of interest for us are those coming from a rational normal curve, respectively from a

rational normal scroll. If R = S = k[z0, · · · , zg], m = 2, n = g and ↵ is given by the matrix Z in (2),
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then n�m+1 = g� 1 is the codimension of �g in Pg, and the corresponding Eagon–Northcott complex

gives a minimal resolution of S/I2(↵).

Exercise 24. Choose bases and write down explicitly the Eagon–Northcott complex for the rational

normal curves of degree g = 3 and g = 4.

For a1, · · · , ad � 1, a rational normal scroll of type (a1, a2, · · · , ad) is defined by the 2⇥ 2 minors of a

matrix obtained by concatenating matrices of the form (2) in di↵erent sets of variables:

A(a1, · · · , ad) =

 
x1,0 x1,1 · · · x1,a1�1 · · · · · · xd,0 xd,1 · · · xd,ad�1

x1,1 x1,2 · · · x1,a1 · · · · · · xd,1 xd,2 · · · xd,ad

!

The resulting scroll has dimension d and is a subvariety in Pa1+···+ad+d�1. Note that the matrixA(a1, · · · , ad)

gives a map between free modules of ranks n = a1 + · · · + ad and m = 2, so n �m + 1 is precisely the

codimension of the scroll, and the Eagon–Northcott complex is again exact. The case of the rational

normal curve of degree g can be recovered by taking d = 1 and a1 = g.

Exercise 25. Verify that the columns of the matrices (6) (resp. (10)) can be rearranged in such a way

that they agree, after a relabelling, with scrollar matrices A(a1, a2) (resp. A(a1, · · · , ap)).

The Buchsbaum–Rim complex. We continue with the notation from the previous section. The

Buchsbaum–Rim complex associated with the map ↵ : F �! G is denoted BR•(↵), and its terms are

given by

BR0(↵) = G, BR1(↵) = F, BRi(↵) =
i+m�1^

F ⌦ det(G_)⌦Di�2(G_) for i = 2, · · · , n�m+ 1.

The first di↵erential is d1 = ↵, while the second one is obtained by composing

m+1^
F ⌦

m^
G_

�!

 
m^

F ⌦ F

!
⌦

m^
G_

�! F

where the first map is the natural inclusion, while the second one is induced by

m^
↵ 2 HomR

 
m^

F,
m^

G

!
= HomR

 
m^

F ⌦

m^
G_, R

!
.

The higher di↵erentials are defined in analogy with the ones for the Eagon–Northcott complex. Just

like in the case of the Eagon–Northcott complex, when ↵ is surjective the complex BR•(↵) is exact. A

similar statement holds if we replace F,G by locally free sheaves.
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Cohomology of line bundles on projective space, and Castelnuovo–Mumford regularity. Let

V be an n-dimensional vector space over ome field k. Let P = P(V _) denote the projective space

parametrizing one-dimensional subspaces of V _, so that H0(P,OP(1)) = V . We have

H0(P,OP(d)) =

8
<

:
Symd(V ) d � 0;

0 d < 0.

Hn�1(P,OP(d)) =

8
<

:
Sym�d�n(V )_ = D�d�n(V _) d  �n;

0 d > �n.

H i(P,OP(d)) = 0 for all d 2 Z, i 6= 0 and i 6= n� 1.

A coherent sheaf F on P is d-regular if H i(P,F(d� i)) = 0 for i > 0. It follows from the cohomological

calculations above that for any d 2 Z, the sheaf F = OP(�d) is d-regular.

In general, we have that F is d-regular if and only if it admits a resolution F• where Fi '
L

OP(�d�i).

More generally, F is d-regular if it admits a resolution F• where Fi is (d + i)-regular. If F = F
0
� F

00

then F is d-regular if and only if both F
0,F 00 are d-regular. If E is a locally free sheaf which is e-regular,

and if F is d-regular, then the tensor product F ⌦ E is (d+ e)-regular.


