KOSZUL MODULES

Appendix

Symmetric vs divided powers. Let V denote a free module of finite rank over a ring \mathbf{k} , and for d > 0 consider the tensor power $T^d V := V^{\otimes d} = V \otimes V \otimes \cdots \otimes V$ with the natural action of the symmetric group \mathfrak{S}_d by permuting the factors. The **divided power** $D^d V$ is defined as the set of symmetric tensors in $T^d V$, that is,

$$D^{d} V := \{ \omega \in T^{d} V : \sigma(\omega) = \omega \text{ for all } \sigma \in \mathfrak{S}_{d} \}$$

If we consider the subspace of $T^d V$ defined by

$$\Sigma_d := \operatorname{Span}\{\sigma(\omega) - \omega : \sigma \in \mathfrak{S}_d \text{ and } \omega \in T^d V\},\$$

then the **symmetric power** Sym^d V is defined as the quotient Sym^d V := $T^d V / \Sigma_d$. If V has a basis (x_1, \ldots, x_n) , then Sym^d V identifies with the space of homogeneous polynomials of degree d in x_1, \ldots, x_n , and as such it has a basis of monomials $x_1^{a_1} \cdots x_n^{a_n}$, where $a_1 + \cdots + a_n = d$. To get a basis for $D^d V$ we first consider the orbits

$$O_{a_1,\ldots,a_n} := \mathfrak{S}_d \cdot x_1^{\otimes a_1} \otimes x_2^{\otimes a_2} \otimes \cdots \otimes x_n^{\otimes a_n}$$

and for $a_1 + \cdots + a_n = d$ consider the **divided power monomials**

$$x_1^{(a_1)}\cdots x_n^{(a_n)} := \sum_{\omega \in O_{a_1,\dots,a_n}} \omega.$$

They form a basis for $D^d(V)$, and in particular we have that $\dim(\operatorname{Sym}^d V) = \dim(D^d V)$. By composing the inclusion of $D^d V$ into $T^d V$ with the projection onto $\operatorname{Sym}^d V$ we obtain a natural map

$$D^{d}V \longrightarrow \operatorname{Sym}^{d}V, \quad x_{1}^{(a_{1})} \cdots x_{n}^{(a_{n})} \mapsto \binom{d}{a_{1}, \dots, a_{n}} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}, \text{ where } \binom{d}{a_{1}, \dots, a_{n}} = \frac{d!}{a_{1}! \cdots a_{n}!}.$$
 (23)

This map is an isomorphism when the multinomial coefficients are invertible (for instance, when \mathbf{k} is a field with char(\mathbf{k}) = 0 or char(\mathbf{k}) > d). In general it is neither injective, nor surjective. There is a natural \mathfrak{S}_n -invariant perfect pairing

$$T^d(V) \times T^d(V^{\vee}) \longrightarrow \mathbf{k},$$
 (24)

defined on pure tensors via

$$\langle v_1 \otimes \cdots \otimes v_d, f_1 \otimes \cdots \otimes f_d \rangle = f_1(v_1)f_2(v_2)\cdots f_d(v_d), \text{ where } v_i \in V \text{ and } f_j \in V^{\vee}.$$

This induces a perfect pairing between $\operatorname{Sym}^d V$ and $D^d(V^{\vee})$, giving a natural identification

$$(\operatorname{Sym}^d V)^{\vee} \cong \mathrm{D}^d(V^{\vee}).$$

CLAUDIU RAICU

The construction of tensor, symmetric and divided powers is functorial, so it can be applied to any locally free sheaf \mathcal{E} on a variety X. It follows from the discussion above that when $\operatorname{char}(\mathbf{k}) > d$ we have $\operatorname{Sym}^d(\mathcal{E}) \simeq \operatorname{D}^d(\mathcal{E})$, and the inclusion $\operatorname{D}^d(\mathcal{E}) \hookrightarrow T^d(\mathcal{E})$ is split. In arbitrary characteristic, we have $(\operatorname{Sym}^d \mathcal{E})^{\vee} \simeq \operatorname{D}^d(\mathcal{E}^{\vee})$, where $\mathcal{E}^{\vee} = \mathscr{H}_{\operatorname{cm} \mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$.

The Eagon–Northcott and Koszul complexes. Suppose that F, G are free modules over a ring R, with rank(F) = n, rank(G) = m, $n \ge m$, and consider an R-linear map $\alpha : F \longrightarrow G$. The Eagon– Northcott complex of the map α is denoted $\mathbf{EN}_{\bullet}(\alpha)$, and its terms are given by

$$\mathbf{EN}_0(\alpha) = \bigwedge^m G, \ \mathbf{EN}_i(\alpha) = \bigwedge^{i+m-1} F \otimes \mathbf{D}^{i-1}(G^{\vee}) \text{ for } i = 1, \cdots, n-m+1.$$

The differential $d_i : \mathbf{EN}_i \longrightarrow \mathbf{EN}_{i-1}$ is constructed as follows. The first map is $d_1 = \bigwedge^m \alpha$, and for $i \ge 2$, d_i is given by

$$\bigwedge^{i+m-1} F \otimes \mathcal{D}^{i-1}(G^{\vee}) \longrightarrow \left(\bigwedge^{i+m-2} F \otimes F\right) \otimes (\mathcal{D}^{i-2}(G^{\vee}) \otimes G^{\vee}) \longrightarrow \bigwedge^{i+m-2} F \otimes \mathcal{D}^{i-2}(G^{\vee}),$$

where the first map is induced by the natural inclusions, and the second one is induced by

$$\alpha \in \operatorname{Hom}_R(F,G) = F^{\vee} \otimes G = \operatorname{Hom}_R(F \otimes G^{\vee}, R).$$

If α is surjective then $\mathbf{EN}_{\bullet}(\alpha)$ is an exact complex.

If we choose bases for F and G, then α is expressed by a $m \times n$ matrix, and $\bigwedge^m \alpha$ is given by a one-row matrix whose entries are the $m \times m$ minors of α . Writing $I_m(\alpha)$ for the ideal they generate, it follows that $\operatorname{coker}(d_1) \simeq S/I_m(\alpha)$. Suppose that R is a standard graded polynomial ring, that F, G are graded R-modules, and that α is a degree preserving map and it is minimal (that is, it has entries in the maximal homogeneous ideal). Under suitable genericity assumptions, such as $\operatorname{codim}(I_m(\alpha)) = n - m + 1$, $\operatorname{EN}_{\bullet}(\alpha)$ gives a minimal resolution of $S/I_m(\alpha)$.

The complex obtained in the special case m = 1 is called a **Koszul complex**, and is denoted $\mathbf{K}_{\bullet}(\alpha)$. The condition that $\operatorname{codim}(I_m(\alpha)) = n - m + 1$ is then equivalent to the requirement that the entries of α form a regular sequence, which is the familiar condition characterizing the exactness of the Koszul complex.

By functoriality, one can perform similar constructions in the relative setting, when F, G are replaced by locally free sheaves \mathcal{F}, \mathcal{G} on a variety X. If α is surjective then $\mathbf{EN}_{\bullet}(\alpha)$, as remarked in the absolute setting.

The examples of interest for us are those coming from a rational normal curve, respectively from a rational normal scroll. If $R = S = \mathbf{k}[z_0, \dots, z_g]$, m = 2, n = g and α is given by the matrix Z in (2),

16

then n - m + 1 = g - 1 is the codimension of Γ_g in \mathbb{P}^g , and the corresponding Eagon–Northcott complex gives a minimal resolution of $S/I_2(\alpha)$.

Exercise 24. Choose bases and write down explicitly the Eagon–Northcott complex for the rational normal curves of degree g = 3 and g = 4.

For $a_1, \dots, a_d \ge 1$, a **rational normal scroll** of type (a_1, a_2, \dots, a_d) is defined by the 2×2 minors of a matrix obtained by concatenating matrices of the form (2) in different sets of variables:

$$A(a_1, \cdots, a_d) = \begin{pmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,a_1-1} \\ x_{1,1} & x_{1,2} & \cdots & x_{1,a_1} \\ \end{pmatrix} \begin{pmatrix} \cdots & \cdots & x_{d,0} & x_{d,1} & \cdots & x_{d,a_d-1} \\ x_{d,1} & x_{d,2} & \cdots & x_{d,a_d} \end{pmatrix}$$

The resulting scroll has dimension d and is a subvariety in $\mathbb{P}^{a_1+\dots+a_d+d-1}$. Note that the matrix $A(a_1,\dots,a_d)$ gives a map between free modules of ranks $n = a_1 + \dots + a_d$ and m = 2, so n - m + 1 is precisely the codimension of the scroll, and the Eagon–Northcott complex is again exact. The case of the rational normal curve of degree g can be recovered by taking d = 1 and $a_1 = g$.

Exercise 25. Verify that the columns of the matrices (6) (resp. (10)) can be rearranged in such a way that they agree, after a relabelling, with scrollar matrices $A(a_1, a_2)$ (resp. $A(a_1, \dots, a_p)$).

The Buchsbaum–Rim complex. We continue with the notation from the previous section. The Buchsbaum–Rim complex associated with the map $\alpha : F \longrightarrow G$ is denoted $\mathbf{BR}_{\bullet}(\alpha)$, and its terms are given by

$$\mathbf{BR}_0(\alpha) = G, \ \mathbf{BR}_1(\alpha) = F, \ \mathbf{BR}_i(\alpha) = \bigwedge^{i+m-1} F \otimes \det(G^{\vee}) \otimes \mathrm{D}^{i-2}(G^{\vee}) \text{ for } i = 2, \cdots, n-m+1.$$

The first differential is $d_1 = \alpha$, while the second one is obtained by composing

$$\bigwedge^{m+1} F \otimes \bigwedge^m G^{\vee} \longrightarrow \left(\bigwedge^m F \otimes F\right) \otimes \bigwedge^m G^{\vee} \longrightarrow F$$

where the first map is the natural inclusion, while the second one is induced by

$$\bigwedge^{m} \alpha \in \operatorname{Hom}_{R}\left(\bigwedge^{m} F, \bigwedge^{m} G\right) = \operatorname{Hom}_{R}\left(\bigwedge^{m} F \otimes \bigwedge^{m} G^{\vee}, R\right).$$

The higher differentials are defined in analogy with the ones for the Eagon–Northcott complex. Just like in the case of the Eagon–Northcott complex, when α is surjective the complex $\mathbf{BR}_{\bullet}(\alpha)$ is exact. A similar statement holds if we replace F, G by locally free sheaves.

CLAUDIU RAICU

Cohomology of line bundles on projective space, and Castelnuovo–Mumford regularity. Let V be an *n*-dimensional vector space over ome field **k**. Let $\mathbf{P} = \mathbb{P}(V^{\vee})$ denote the projective space parametrizing one-dimensional subspaces of V^{\vee} , so that $H^0(\mathbf{P}, \mathcal{O}_{\mathbf{P}}(1)) = V$. We have

$$H^{0}(\mathbf{P}, \mathcal{O}_{\mathbf{P}}(d)) = \begin{cases} \operatorname{Sym}^{d}(V) & d \ge 0; \\ 0 & d < 0. \end{cases}$$
$$H^{n-1}(\mathbf{P}, \mathcal{O}_{\mathbf{P}}(d)) = \begin{cases} \operatorname{Sym}^{-d-n}(V)^{\vee} = \mathrm{D}^{-d-n}(V^{\vee}) & d \le -n; \\ 0 & d > -n. \end{cases}$$
$$H^{i}(\mathbf{P}, \mathcal{O}_{\mathbf{P}}(d)) = 0 \text{ for all } d \in \mathbb{Z}, \ i \ne 0 \text{ and } i \ne n-1. \end{cases}$$

A coherent sheaf \mathcal{F} on \mathbf{P} is *d*-regular if $H^i(\mathbf{P}, \mathcal{F}(d-i)) = 0$ for i > 0. It follows from the cohomological calculations above that for any $d \in \mathbb{Z}$, the sheaf $\mathcal{F} = \mathcal{O}_{\mathbf{P}}(-d)$ is *d*-regular.

In general, we have that \mathcal{F} is *d*-regular if and only if it admits a resolution \mathcal{F}_{\bullet} where $\mathcal{F}_i \simeq \bigoplus \mathcal{O}_{\mathbf{P}}(-d-i)$. More generally, \mathcal{F} is *d*-regular if it admits a resolution \mathcal{F}_{\bullet} where \mathcal{F}_i is (d+i)-regular. If $\mathcal{F} = \mathcal{F}' \oplus \mathcal{F}''$ then \mathcal{F} is *d*-regular if and only if both $\mathcal{F}', \mathcal{F}''$ are *d*-regular. If \mathcal{E} is a locally free sheaf which is *e*-regular, and if \mathcal{F} is *d*-regular, then the tensor product $\mathcal{F} \otimes \mathcal{E}$ is (d+e)-regular.