CLAUDIU RAICU

3. Weyman modules and the syzygies of \mathcal{T}_q

In this section we introduce a natural class of examples of Koszul modules that satisfy (in most characteristics) the hypotheses of Theorems 12 and 16. They are called **Weyman modules**, and provide a link with the Betti numbers of the tangential variety \mathcal{T}_g studied in Section 1. We assume char(\mathbf{k}) $\neq 2$.

3.1. Weyman modules. Let U be a k-vector space of dimension two, and fix a basis (1, x) so that $\operatorname{Sym}^{d} U$ can be identified with the space of polynomials of degree at most d in x. With this choice of basis we identify $\mathbf{k} \simeq \bigwedge^{2} U$ via $1 \mapsto 1 \wedge x$. The perfect pairing

$$U \times U \longrightarrow \bigwedge^2 U \simeq \mathbf{k}$$

gives rise to an identification $U \simeq U^{\vee}$ which we will use freely. For instance we will identify $(\operatorname{Sym}^d U)^{\vee} \simeq D^d U$, instead of the more natural isomorphism $(\operatorname{Sym}^d U)^{\vee} \simeq D^d (U^{\vee})$ (see the Appendix). Recall that in characteristic zero (or larger than d) we also have an isomorphism $D^d U \simeq \operatorname{Sym}^d U$, so that $\operatorname{Sym}^d U$ is isomorphic to its dual!

For $d \ge 0$ we consider the map

$$\psi: \bigwedge^{2} \operatorname{Sym}^{d} U \longrightarrow \operatorname{Sym}^{2d-2} U, \quad \psi(x^{i} \wedge x^{j}) = (i-j) \cdot x^{i+j-1} \text{ for } 0 \le i, j \le d.$$
(21)

Exercise 18. Show that if $char(\mathbf{k}) \neq 2$ then ψ is surjective.

Exercise 19. Check that the map ψ is SL(U)-equivariant, where SL(U) is the group of linear automorphisms of U with determinant one. All the identifications that we make in this section will be SL(U)-equivariant!

We define a pair (V, K) by setting $V^{\vee} = \operatorname{Sym}^{d} U$ and $K^{\perp} = \operatorname{ker}(\psi)$. It follows that $V = D^{d} U$, and since ψ is surjective (in characteristic $\neq 2$), we get

$$K^{\vee} = \bigwedge^2 V^{\vee}/K^{\perp} = \bigwedge^2 V^{\vee}/\ker(\psi) \simeq \operatorname{Im}(\psi) = \operatorname{Sym}^{2d-2} U,$$

so that $K = D^{2d-2} U$. The Koszul module associated with this pair (V, K) is denoted

$$W^{(d)} := W(D^{d} U, D^{2d-2} U)$$

and is called a **Weyman module**. We will show that in most characteristics, Weyman modules satisfy the hypotheses of Theorems 12 and 16. This follows from the following.

Lemma 20. Let $p = char(\mathbf{k})$. If p = 0 or $p \ge n$, then $W^{(n-1)}$ has vanishing resonance (and therefore it has finite length).

KOSZUL MODULES

Proof. The vanishing of resonance is equivalent to the condition that $\ker(\psi)$ contains no non-zero decomposable form $f_1 \wedge f_2$. Suppose by contradiction that $\ker(\psi)$ contains a non-zero decomposable form $f_1 \wedge f_2$, and that p = 0 or $p \ge n$. By rescaling $f_1 \wedge f_2$, we may assume that f_1, f_2 are monic polynomials in x, say

$$f_1 = x^r + b_{r-1}x^{r-1} + \dots + b_0, \quad f_2 = x^s + c_{s-1}x^{s-1} + \dots + c_0.$$

If $r \neq s$, we may assume r > s and we get $\psi(f_1 \wedge f_2) = (r - s)x^{r+s-1} + h(x)$, where deg(h) < r + s - 1and $0 < r - s \le n - 1$. It follows that p cannot divide r - s, hence $\psi(f_1 \wedge f_2) \ne 0$, a contradiction. If r = s, then we can use the fact that $f_1 \wedge f_2 = f_1 \wedge (f_2 - f_1)$ to reduce to the case $r \ne s$. \Box

Exercise 21. With the notation in Lemma 20, check that if $3 \le p \le n-1$ then $W^{(n-1)}$ has infinite length.

The relationship with the syzygies of \mathcal{T}_g is given in the following theorem.

Theorem 22. If $char(\mathbf{k}) \neq 2$, then for each i = 1, ..., g - 3, we have a natural identification

$$B_{i,2}(\mathcal{T}_g) = W_{g-3-i}^{(i+2)}.$$

Example 23. Let g = 6 and suppose that $char(\mathbf{k}) = 0$. Combining Theorem 22 with (20) we get that the Betti table of \mathcal{T}_6 is

	0	1	2	3	4
0	1	_	_	_	_
1	-		5	_	_
$\frac{2}{3}$	-	_	5	6	_
3	_	_	_	_	1

Exercise 24. Write down the Betti table $\beta(\mathcal{T}_q)$ when g = 7, 8, 9 and char(\mathbf{k}) = 0.

Based on Theorem 22, we can now finish the proof of Theorem 7.

Proof of Theorem 7 (the equivalence (9)). The implication " \Leftarrow " in (9) was already discussed in Exercise 10. For the converse, we assume that $3 \le p \le \frac{g+1}{2}$, and using Theorem 22, we have to show that

$$W_{g-3-i}^{(i+2)} = 0$$
 for $i \le p-3$.

Let n = i + 3 and note that $p \ge n$, so Lemma 20 applies to show that $W^{(i+2)} = W^{(n-1)}$ has finite length. We also have that $p \ge n - 2$, so by Theorem 12 we conclude that $W_q^{(n-1)} = 0$ for $q \ge n - 3$. Since $g \ge 2p - 1$ and $i \le p - 3$, it follows that if we let q = g - 3 - i then $q \ge (2p - 1) - p = p - 1 \ge n - 3$. \Box

Exercise 25. Prove the equivalence (8) using Theorem 22.