12 CLAUDIU RAICU
3. WEYMAN MODULES AND THE SYZYGIES OF 7;,

In this section we introduce a natural class of examples of Koszul modules that satisfy (in most
characteristics) the hypotheses of Theorems 12 and 16. They are called Weyman modules, and provide

a link with the Betti numbers of the tangential variety 7, studied in Section 1. We assume char(k) # 2.

3.1. Weyman modules. Let U be a k-vector space of dimension two, and fix a basis (1,z) so that
Sym? U can be identified with the space of polynomials of degree at most d in z. With this choice of
basis we identify k ~ /\2 U via 1 +— 1 A x. The perfect pairing

2
U><U—>/\U:k

gives rise to an identification U ~ UY which we will use freely. For instance we will identify (Sym?U)V ~
DY U, instead of the more natural isomorphism (Sym?U)Y ~ D4(U") (see the Appendix). Recall that in
characteristic zero (or larger than d) we also have an isomorphism DU ~ Sym?U, so that Sym? U is
isomorphic to its dual!
For d > 0 we consider the map
2

P /\SymdU — Sym?T2U,  p(zt Aad) = (i—j) 2" for 0 <45 < d. (21)

Exercise 18. Show that if char(k) # 2 then ¢ is surjective.

Exercise 19. Check that the map 1 is SL(U)-equivariant, where SL(U) is the group of linear auto-
morphisms of U with determinant one. All the identifications that we make in this section will be
SL(U)-equivariant!

We define a pair (V, K) by setting VY = Sym?U and K = ker(¢). It follows that V = DU, and
since 1) is surjective (in characteristic # 2), we get
2 2
KY = A\VY/E*+= \VY/ker(y) ~ Im(¢)) = Sym** 2 U,
so that K = D?¢=2 /. The Koszul module associated with this pair (V, K) is denoted
W@ .= w(DU, D2 ),

and is called a Weyman module. We will show that in most characteristics, Weyman modules satisfy

the hypotheses of Theorems 12 and 16. This follows from the following.

Lemma 20. Let p = char(k). If p=0 or p > n, then W™V has vanishing resonance (and therefore it
has finite length).
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Proof. The vanishing of resonance is equivalent to the condition that ker(¢)) contains no non-zero de-
composable form f; A fao. Suppose by contradiction that ker(¢)) contains a non-zero decomposable form
fi N fo, and that p = 0 or p > n. By rescaling fi A fo, we may assume that fi, fo are monic polynomials
in z, say
fi=a" +bx" by, fo=a2t et 4 e

If r # s, we may assume r > s and we get ¥(f1 A f2) = (r — 8)z" 571 4 h(x), where deg(h) <r +s—1
and 0 < r —s <n—1. It follows that p cannot divide r — s, hence ¥(f1 A f2) # 0, a contradiction. If
r = s, then we can use the fact that f1 A fo = fi A (fo — f1) to reduce to the case r # s. O

Exercise 21. With the notation in Lemma 20, check that if 3 < p < n — 1 then W (=1 has infinite
length.

The relationship with the syzygies of 7, is given in the following theorem.
Theorem 22. If char(k) # 2, then for eachi=1,...,9 — 3, we have a natural identification

B;2(Ty) = Wg(’j;i)l

Example 23. Let g = 6 and suppose that char(k) = 0. Combining Theorem 22 with (20) we get that

the Betti table of Ty is
0 1 2 3 4

o1 - - - -
1|— 6 5 — —
2 5
3

6i
- - - -1

Exercise 24. Write down the Betti table 5(7;) when g = 7,8,9 and char(k) = 0.
Based on Theorem 22, we can now finish the proof of Theorem 7.

Proof of Theorem 7 (the equivalence (9)). The implication “<=" in (9) was already discussed in Exer-

cise 10. For the converse, we assume that 3 < p < %, and using Theorem 22, we have to show that

Wg(l_?_)l =0fori<p-3.
Let n = i+ 3 and note that p > n, so Lemma 20 applies to show that W(+2) = W1 hag finite length.

We also have that p > n — 2, so by Theorem 12 we conclude that Wq(n_l) =0 for ¢ > n — 3. Since
g>2p—1andi<p-—3, it follows that if welet g =g—3—itheng>2p—1)—p=p—-1>n-3. O

Exercise 25. Prove the equivalence (8) using Theorem 22.



