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3. Weyman modules and the syzygies of Tg

In this section we introduce a natural class of examples of Koszul modules that satisfy (in most

characteristics) the hypotheses of Theorems 12 and 16. They are called Weyman modules, and provide

a link with the Betti numbers of the tangential variety Tg studied in Section 1. We assume char(k) 6= 2.

3.1. Weyman modules. Let U be a k-vector space of dimension two, and fix a basis (1, x) so that

Symd U can be identified with the space of polynomials of degree at most d in x. With this choice of

basis we identify k '
V

2 U via 1 7! 1 ^ x. The perfect pairing

U ⇥ U �!

2^
U ' k

gives rise to an identification U ' U_ which we will use freely. For instance we will identify (Symd U)_ '

Dd U , instead of the more natural isomorphism (Symd U)_ ' Dd(U_) (see the Appendix). Recall that in

characteristic zero (or larger than d) we also have an isomorphism Dd U ' Symd U , so that Symd U is

isomorphic to its dual!

For d � 0 we consider the map

 :
2^
Symd U �! Sym2d�2 U,  (xi ^ xj) = (i� j) · xi+j�1 for 0  i, j  d. (21)

Exercise 18. Show that if char(k) 6= 2 then  is surjective.

Exercise 19. Check that the map  is SL(U)-equivariant, where SL(U) is the group of linear auto-

morphisms of U with determinant one. All the identifications that we make in this section will be

SL(U)-equivariant!

We define a pair (V,K) by setting V _ = Symd U and K? = ker( ). It follows that V = Dd U , and

since  is surjective (in characteristic 6= 2), we get

K_ =
2^
V _/K? =

2^
V _/ ker( ) ' Im( ) = Sym2d�2 U,

so that K = D2d�2 U . The Koszul module associated with this pair (V,K) is denoted

W (d) := W (Dd U,D2d�2 U),

and is called a Weyman module. We will show that in most characteristics, Weyman modules satisfy

the hypotheses of Theorems 12 and 16. This follows from the following.

Lemma 20. Let p = char(k). If p = 0 or p � n, then W (n�1) has vanishing resonance (and therefore it

has finite length).
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Proof. The vanishing of resonance is equivalent to the condition that ker( ) contains no non-zero de-

composable form f1 ^ f2. Suppose by contradiction that ker( ) contains a non-zero decomposable form

f1 ^ f2, and that p = 0 or p � n. By rescaling f1 ^ f2, we may assume that f1, f2 are monic polynomials

in x, say

f1 = xr + br�1x
r�1 + · · ·+ b0, f2 = xs + cs�1x

s�1 + · · ·+ c0.

If r 6= s, we may assume r > s and we get  (f1 ^ f2) = (r � s)xr+s�1 + h(x), where deg(h) < r + s� 1

and 0 < r � s  n � 1. It follows that p cannot divide r � s, hence  (f1 ^ f2) 6= 0, a contradiction. If

r = s, then we can use the fact that f1 ^ f2 = f1 ^ (f2 � f1) to reduce to the case r 6= s. ⇤

Exercise 21. With the notation in Lemma 20, check that if 3  p  n � 1 then W (n�1) has infinite

length.

The relationship with the syzygies of Tg is given in the following theorem.

Theorem 22. If char(k) 6= 2, then for each i = 1, . . . , g � 3, we have a natural identification

Bi,2(Tg) = W (i+2)

g�3�i
.

Example 23. Let g = 6 and suppose that char(k) = 0. Combining Theorem 22 with (20) we get that

the Betti table of T6 is
0 1 2 3 4

0 1 � � � �

1 � 6 5 � �

2 � � 5 6 �

3 � � � � 1

Exercise 24. Write down the Betti table �(Tg) when g = 7, 8, 9 and char(k) = 0.

Based on Theorem 22, we can now finish the proof of Theorem 7.

Proof of Theorem 7 (the equivalence (9)). The implication “(=” in (9) was already discussed in Exer-

cise 10. For the converse, we assume that 3  p 
g+1

2
, and using Theorem 22, we have to show that

W (i+2)

g�3�i
= 0 for i  p� 3.

Let n = i+3 and note that p � n, so Lemma 20 applies to show that W (i+2) = W (n�1) has finite length.

We also have that p � n � 2, so by Theorem 12 we conclude that W (n�1)

q = 0 for q � n � 3. Since

g � 2p� 1 and i  p� 3, it follows that if we let q = g� 3� i then q � (2p� 1)� p = p� 1 � n� 3. ⇤

Exercise 25. Prove the equivalence (8) using Theorem 22.


