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1. Syzygies of the tangential variety to a rational normal curve

Consider the rational normal curve of degree g, denoted �g and defined as the image of the Veronese

map

⌫g : P1
�! Pg, [a : b] �! [ag : ag�1b : · · · : abg�1 : bg]. (1)

A first natural question to ask is what are the equations vanishing along �g. To answer it, we let

S = k[z0, · · · , zg] denote the homogeneous coordinate ring of Pg, let A = k[x, y] denote the homogeneous

coordinate ring of P1, and consider the pull-back homomorphism

� : S �! A, �(zi) = xg�iyi, for i = 0, · · · , g.

The ideal I(�g) of polynomials vanishing along �g is equal to ker(�). Since the matrix
"

xg xg�1y · · · xyg�1

xg�1y xg�2y2 · · · yg

#

has proportional rows (with ratio x/y), it follows that its 2⇥ 2 minors vanish identically. In other words,

the 2⇥ 2 minors of

Z =

"
z0 z1 · · · zg�1

z1 z2 · · · zg

#
(2)

belong to ker(�) = I(�g).

Exercise 1. Show that I(�g) is generated by the 2⇥ 2 minors of Z.

The next natural step is to investigate the minimal free resolution of the homogeneous coordinate ring

S/I(�g) of �g. We let

Bi,j(�g) = TorSi (S/I(�g),k)i+j

denote the module of i-syzygies of weight j (or degree i+ j), and define the Betti numbers of �g as

bi,j(�g) = dimkBi,j(�g).

The Betti numbers of �g are recorded into the Betti table �(�g), where the columns account for the

homological degree, and the rows for internal degree:

i

...

j · · · bi,j(�g) · · ·

...
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For example, when g = 3, �g is the twisted cubic curve, with Betti table

0 1 2

0 1 – –

1 – 3 2

where a dash indicates the vanishing of the corresponding Betti number. We say that the twisted cubic

has a linear minimal free resolution (after the first step), since all (but the first) Betti numbers are

concentrated in a single row. This is true more generally for any �g, whose minimal free resolution is

given by an Eagon–Northcott complex, and the corresponding Betti table takes the following shape:

0 1 2 · · · i · · · g � 1

0 1 – – · · · – · · · –

1 –

✓
g

2

◆
2 ·

✓
g

3

◆
· · · i ·

✓
g

i+ 1

◆
· · · (g � 1)

Remark 2. The description of the defining equations and that of the Betti table of �g is independent on

the characteristic of the field k.

Let Tg denote the tangential variety of �g, defined as the union of the tangent lines to �g. One of the

problems that we will be concerned with in these notes is the following.

Problem 3. Describe the defining equations and the Betti table of Tg.

1.1. The local description of �g, Tg. Restricting the Veronese map ⌫g in (1) to the a�ne chart x = 1

yields a local parametrization of �g via

t 7! [1 : t : · · · : tg] = (t, t2, · · · , tg),

where [· · · ] represents projective notation, and (· · · ) represents a�ne notation. The tangent directions

to �g are determined by di↵erentiating with respect to t, so Tg is described in the a�ne chart z0 = 1 by

(t, s) �! (t, t2, · · · , tg) + s · (1, 2t, · · · , gtg�1) = (t+ s, t2 + 2ts, · · · , tg + gtg�1s). (3)

Since Tg is irreducible, one can use the local description above to check when a homogeneous polynomial

belongs to I(Tg). This observation can be applied to check that the quadratic equations constructed below

vanish along Tg. Let

�i,j = det

"
zi zj

zi+1 zj+1

#
, for 0  i < j  g � 1,

and define

Qi,j = �i+2,j � 2 ·�i+1,j+1 +�i,j+2, for 0  i < j  g � 3. (4)
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Exercise 4. Check that Qi,j 2 I(Tg) for all 0  i < j  g � 3.

Remark 5. As we’ll see later, the quadrics constructed above will generate, in most cases, the ideal I(�g).

The exceptions are when g  4, or when char(k) 2 {2, 3}.

1.2. Characteristic zero interpretation of �g, Tg. Suppose that char(k) = 0 (or more generally,

that the binomial coe�cients
�
g

i

�
, i = 1, · · · , g � 1, are invertible in k), and consider the vector space of

homogeneous forms of degree g in the variables X,Y . Since the binomial coe�cients are invertible in k,

one can write each such form uniquely as

F (X,Y ) = z0 ·X
g + z1 ·

✓
g

1

◆
·Xg�1Y + · · ·+ zi ·

✓
g

i

◆
·Xg�iY i + · · ·+ zg · Y

g,

for z0, · · · , zg 2 k. Notice that F (X,Y ) is a power of a linear form, namely F (X,Y ) = (aX + bY )g, if

and only if

z0 = ag, z1 = ag�1b, · · · , zi = ag�ibi, · · · , zg = bg.

It follows that �g parametrizes (up to scaling) binary forms F (X,Y ) that factor as a power Lg of a linear

form L in X,Y .

Exercise 6. Check that Tg parametrizes (up to scaling) binary forms F (X,Y ) that factor as a product

Lg�1

1
· L2, where L1, L2 are linear forms in X,Y .

In the case g = 3, it follows that T3 parametrizes cubic forms with a double root (in P1). This is a

quartic surface in P3, defined by the vanishing of the discriminant of F :

� 3z21z
2

2 + 4z0z
3

2 + 4z31z3 � 6z0z1z2z3 + z20z
2

3 = 0. (5)

If char(k) = 2, this equation becomes (z0z3 � z1z2)2 = 0, I(T3) = hz0z3 � z1z2i, and T3 ' P1
⇥P1. The

following section describes more generally the situation in characteristic 2.

1.3. The Betti table of Tg in characteristic 2. Suppose char(k) = 2 and consider the matrix of linear

forms

M =

"
z0 z1 · · · zg�2

z2 z3 · · · zg

#
. (6)

We claim that the 2⇥ 2 minors of M vanish on Tg. As noted earlier, it su�ces to check this assertion on

the chart (3). Evaluating M on the point of Tg parametrized by (t, s) we obtain

M(t, s) =

"
1 t t2 t3 · · · tg�2

t2 t3 t4 t5 · · · tg

#
+ s ·

"
0 t 0 t3 · · · (g � 2) · tg�2

0 t3 0 t5 · · · g · tg

#
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Since the second row of M(t, s) is obtained from the first by multiplying by t2, we get the desired

conclusion. The 2 ⇥ 2 minors of M define a rational normal scroll S of dimension 2, so that Tg ✓ S.

Since dim(Tg) = 2, it follows that Tg = S. It follows that the minimal resolution of Tg is given by an

Eagon–Northcott complex, and the Betti table takes the form

0 1 2 · · · i · · · g � 2

0 1 – – · · · – · · · –

1 –

✓
g � 1

2

◆
2 ·

✓
g � 1

3

◆
· · · i ·

✓
g � 1

i+ 1

◆
· · · (g � 2)

Note that I(Tg) is generated in this case by

✓
g � 1

2

◆
quadrics, so that the

✓
g � 2

2

◆
quadrics defined in

(4) are not enough to generate I(Tg).

1.4. The Betti numbers of Tg for char(k) 6= 2. If char(k) 6= 2, we will see that the homogeneous

coordinate ring of Tg is Gorenstein of Castelnuovo–Mumford regularity 3, that is, the Betti table of Tg

has the following shape

0 1 2 · · · g � 4 g � 3 g � 2

0 1 � � · · · � � �

1 � b1,1 b2,1 · · · bg�4,1 bg�3,1 �

2 � b1,2 b2,2 · · · bg�4,2 bg�3,2 �

3 � � � · · · � � 1

(7)

with bi,1 = bg�2�i,2 for i = 1, · · · , g � 3. In order to understand the Betti table, it is then su�cient to

study the second row (that is, b•,2). The following theorem, whose proof we’ll discuss later, completely

characterizes the (non-)vanishing behavior of the Betti numbers of Tg.

Theorem 7. Suppose that p = char(k) 6= 2. If p = 0 or p �
g+2

2
, then

bi,2(Tg) 6= 0 ()
g � 2

2
 i  g � 3. (8)

If 3  p 
g+1

2
, then

bi,2(Tg) 6= 0 () p� 2  i  g � 3. (9)

Notice that for p = 3 and g � 5, we have b1,2(Tg) 6= 0, so the ideal I(Tg) requires cubic minimal

generators!

Exercise 8. Show that if p 6= 2 then b1,1(Tg) =

✓
g � 2

2

◆
, and (4) gives all the quadrics vanishing on Tg.



6 CLAUDIU RAICU

Example 9. To illustrate the dependence of the Betti numbers of Tg on the characteristic, consider the

case g = 5. If char(k) 6= 2, 3, it follows from the Exercise above and Theorem 7 that �(T5) is

0 1 2 3

0 1 � � �

1 � 3 � �

2 � � 3 �

3 � � � 1

so that T5 is a complete intersection of three quadrics. If char(k) = 3 then it can be checked that the

Betti table is
0 1 2 3

0 1 � � �

1 � 3 2 �

2 � 2 3 �

3 � � � 1

while for char(k) = 2, we have seen that �(T5) is

0 1 2 3

0 1 � � �

1 � 6 8 3

There is one part of Theorem 7 that can be checked using ideas from Section 1.3:

Exercise 10. Show that if p < g then the 2⇥ 2 minors of
"
z0 z1 · · · zg�p

zp zp+1 · · · zg

#
(10)

vanish on Tg. Show that these minors cut out a scroll S of dimension p, and conclude that bi,1(S) 6= 0

for 1  i  g � p. Deduce the corresponding non-vanishing for bi,1(Tg), and derive (using the Gorenstein

property) the implication “(=” in (9).


