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1. SYZYGIES OF THE TANGENTIAL VARIETY TO A RATIONAL NORMAL CURVE

Consider the rational normal curve of degree g, denoted I'; and defined as the image of the Veronese
map

vg: P — P9 Ja:b] —[af:a% b iabd ). (1)

A first natural question to ask is what are the equations vanishing along I'y. To answer it, we let

S =Kk[zg,- -, z4] denote the homogeneous coordinate ring of PY, let A = k|x,y] denote the homogeneous

coordinate ring of P!, and consider the pull-back homomorphism
¢:8 — A, ¢(z) =29y, fori=0,---,g.
The ideal I(I'y) of polynomials vanishing along I'y is equal to ker(¢). Since the matrix

wgfly x972y2 yg
has proportional rows (with ratio /y), it follows that its 2 x 2 minors vanish identically. In other words,
the 2 x 2 minors of

7 =

20 21 - Zg—l (2)
Zl 22 .. Zg

belong to ker(¢) = I(I'y).
Exercise 1. Show that I(I'y) is generated by the 2 x 2 minors of Z.

The next natural step is to investigate the minimal free resolution of the homogeneous coordinate ring
S/I(Ty) of I'y. We let
B;j(T'g) = Tor] (S/1(Ty), k)it;
denote the module of i-syzygies of weight j (or degree i + j), and define the Betti numbers of I'; as
bij(Tg) = dimy, B; j(I'y).
The Betti numbers of I'y are recorded into the Betti table 3(I'y), where the columns account for the
homological degree, and the rows for internal degree:

i

gl bi(Ty)
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For example, when g = 3, Iy is the twisted cubic curve, with Betti table
01 2
o1 - -
11— 3 2
where a dash indicates the vanishing of the corresponding Betti number. We say that the twisted cubic
has a linear minimal free resolution (after the first step), since all (but the first) Betti numbers are
concentrated in a single row. This is true more generally for any I'y, whose minimal free resolution is
given by an Eagon—Northcott complex, and the corresponding Betti table takes the following shape:
‘ 0 1 2 . i g —1
0l1 = _ e _ e _

T 00 (1) - e

Remark 2. The description of the defining equations and that of the Betti table of I'y is independent on
the characteristic of the field k.

Let 7, denote the tangential variety of Iy, defined as the union of the tangent lines to I'y. One of the

problems that we will be concerned with in these notes is the following.
Problem 3. Describe the defining equations and the Betti table of 7.

1.1. The local description of I'y, 7,. Restricting the Veronese map v, in (1) to the affine chart z =1

yields a local parametrization of I'y via
tes Lot t9) = (4,82, ,19),

where [---] represents projective notation, and (---) represents affine notation. The tangent directions

to I'y are determined by differentiating with respect to ¢, so 7, is described in the affine chart zg = 1 by

(t,s) — (t,t%, - t9) +5-(1,2t,--- ,gt97 1) = (t + 5,12 + 2ts,--- , 19 4 gt97Ls). (3)

Since 7y is irreducible, one can use the local description above to check when a homogeneous polynomial

belongs to I(7,). This observation can be applied to check that the quadratic equations constructed below
vanish along 7. Let

,for0<i<j<g—1,

2 Zq
A@j = det ! 7
Zi+l  Zj41

and define
Qij = Div2j —2 D1 j41 +Ajjpo, for 0<i<j<g-—3. (4)
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Exercise 4. Check that Q;; € I(7,) for all 0 <i < j <g—3.

Remark 5. As we’ll see later, the quadrics constructed above will generate, in most cases, the ideal I(I'y).

The exceptions are when g < 4, or when char(k) € {2, 3}.

1.2. Characteristic zero interpretation of I'j, 7,. Suppose that char(k) = 0 (or more generally,
that the binomial coefficients (?), i=1,---,g—1, are invertible in k), and consider the vector space of
homogeneous forms of degree g in the variables X, Y. Since the binomial coefficients are invertible in k,

one can write each such form uniquely as
FX,)Y)=20- X942 - <§> 'Xg_1Y+"‘+Zi' <g> .Xg—iyi+_..+zg.yg’
7

for zp,---, 24 € k. Notice that F'(X,Y") is a power of a linear form, namely F(X,Y) = (aX 4+ bY)9, if
and only if

w=0a, z1=a%" b, , zi=a?" ", , zg = b9,
It follows that I'; parametrizes (up to scaling) binary forms F'(X,Y’) that factor as a power LY of a linear
form L in X,Y.

Exercise 6. Check that 7, parametrizes (up to scaling) binary forms F(X,Y’) that factor as a product

L?_l - Ly, where Ly, Ly are linear forms in X, Y.

In the case g = 3, it follows that 73 parametrizes cubic forms with a double root (in P'). This is a

quartic surface in P3, defined by the vanishing of the discriminant of F:
— 32222 4 42023 + 42323 — 629212023 + 2222 = 0. (5)

If char(k) = 2, this equation becomes (2023 — 2122)? = 0, I(T3) = (2023 — 2122), and T3 ~ P! x P!, The

following section describes more generally the situation in characteristic 2.

1.3. The Betti table of 7, in characteristic 2. Suppose char(k) = 2 and consider the matrix of linear

forms

M= [ZO z21 e Zg_2]. (6)

Z2 23 e Zg
We claim that the 2 x 2 minors of M vanish on 7,. As noted earlier, it suffices to check this assertion on

the chart (3). Evaluating M on the point of 7, parametrized by (¢, s) we obtain

1 ¢t 2 3 ... 972
TR S A SR 1

0t 0 3 - (g—2)- 1972

+s-
0t 0 # ... g-t9

M(t,s):[
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Since the second row of M(t,s) is obtained from the first by multiplying by 2, we get the desired
conclusion. The 2 x 2 minors of M define a rational normal scroll S of dimension 2, so that 7, C S.
Since dim(7y) = 2, it follows that 7, = S. It follows that the minimal resolution of 7, is given by an
Eagon—Northcott complex, and the Betti table takes the form
‘ 0 1 9 . i )
0l1 _ _ _ _

s (9;1> 2.<9;1) Z<§:11> . (g—-2)

-1 -2
Note that I(7,) is generated in this case by <g 5 ) quadrics, so that the <g 5 ) quadrics defined in

(4) are not enough to generate I(7y).

1.4. The Betti numbers of 7, for char(k) # 2. If char(k) # 2, we will see that the homogeneous
coordinate ring of 7, is Gorenstein of Castelnuovo-Mumford regularity 3, that is, the Betti table of 7,

has the following shape

0 1 2 . g—4 g—3 g-—2
0 - L. _ _ _
1| — big ba1 -+ bg_a1 bg_31 — (7)
2| — b1 beo -+ bga2 bg3zo0 —
3| - -  — ... _ _ 1
with b;1 = bg—2_;2 for i = 1,--- ,g — 3. In order to understand the Betti table, it is then sufficient to

study the second row (that is, be2). The following theorem, whose proof we’ll discuss later, completely

characterizes the (non-)vanishing behavior of the Betti numbers of 7j,.

Theorem 7. Suppose that p = char(k) #2. If p=0 orp > %, then

bia(T,) 0 i;ggigg—a (8)

If3<p< 2 then
bio(Ty) #0 <= p—-2<i<g-3. (9)

Notice that for p = 3 and g > 5, we have by 2(74) # 0, so the ideal I(7,) requires cubic minimal

generators!

qg—2

Exercise 8. Show that if p # 2 then b1 1(7;) = ( 9

>, and (4) gives all the quadrics vanishing on 7j.
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Example 9. To illustrate the dependence of the Betti numbers of 74 on the characteristic, consider the
case g = 5. If char(k) # 2,3, it follows from the Exercise above and Theorem 7 that 3(75) is

0 1 2 3

- 3 - _
- - 3 _
- - =1

w N = O

so that 75 is a complete intersection of three quadrics. If char(k) = 3 then it can be checked that the
Betti table is

W N = O
[ .
| o w
|

—

while for char(k) = 2, we have seen that 5(75) is

o1 - - -
- 6 8 3

There is one part of Theorem 7 that can be checked using ideas from Section 1.3:

Exercise 10. Show that if p < g then the 2 x 2 minors of
20 21 “ee Zg_p (10)
Zp Zprl Ay

vanish on 7;. Show that these minors cut out a scroll S of dimension p, and conclude that b; 1(S) # 0

for 1 <i < g —p. Deduce the corresponding non-vanishing for b; 1(7;), and derive (using the Gorenstein

property) the implication “<=" in (9).



