CLAUDIU RAICU

1. Syzygies of the tangential variety to a rational normal curve

Consider the rational normal curve of degree g, denoted Γ_g and defined as the image of the Veronese map

$$\nu_g: \mathbf{P}^1 \longrightarrow \mathbf{P}^g, \quad [a:b] \longrightarrow [a^g: a^{g-1}b: \dots: ab^{g-1}: b^g].$$
(1)

A first natural question to ask is what are the equations vanishing along Γ_g . To answer it, we let $S = \mathbf{k}[z_0, \dots, z_g]$ denote the homogeneous coordinate ring of \mathbf{P}^g , let $A = \mathbf{k}[x, y]$ denote the homogeneous coordinate ring of \mathbf{P}^1 , and consider the pull-back homomorphism

$$\phi: S \longrightarrow A, \quad \phi(z_i) = x^{g-i} y^i, \text{ for } i = 0, \cdots, g.$$

The ideal $I(\Gamma_g)$ of polynomials vanishing along Γ_g is equal to ker (ϕ) . Since the matrix

$$\begin{bmatrix} x^g & x^{g-1}y & \cdots & xy^{g-1} \\ x^{g-1}y & x^{g-2}y^2 & \cdots & y^g \end{bmatrix}$$

has proportional rows (with ratio x/y), it follows that its 2×2 minors vanish identically. In other words, the 2×2 minors of

$$Z = \begin{bmatrix} z_0 & z_1 & \cdots & z_{g-1} \\ z_1 & z_2 & \cdots & z_g \end{bmatrix}$$
(2)

belong to $\ker(\phi) = I(\Gamma_g)$.

Exercise 1. Show that $I(\Gamma_g)$ is generated by the 2×2 minors of Z.

The next natural step is to investigate the minimal free resolution of the homogeneous coordinate ring $S/I(\Gamma_g)$ of Γ_g . We let

$$B_{i,j}(\Gamma_g) = \operatorname{Tor}_i^S(S/I(\Gamma_g), \mathbf{k})_{i+j}$$

denote the module of *i*-syzygies of weight j (or degree i + j), and define the **Betti numbers of** Γ_g as

$$b_{i,j}(\Gamma_q) = \dim_{\mathbf{k}} B_{i,j}(\Gamma_q).$$

The Betti numbers of Γ_g are recorded into the **Betti table** $\beta(\Gamma_g)$, where the columns account for the homological degree, and the rows for internal degree:

2

KOSZUL MODULES

For example, when g = 3, Γ_q is the **twisted cubic curve**, with Betti table

where a dash indicates the vanishing of the corresponding Betti number. We say that the twisted cubic has a **linear minimal free resolution** (after the first step), since all (but the first) Betti numbers are concentrated in a single row. This is true more generally for any Γ_g , whose minimal free resolution is given by an Eagon–Northcott complex, and the corresponding Betti table takes the following shape:

Remark 2. The description of the defining equations and that of the Betti table of Γ_g is independent on the characteristic of the field **k**.

Let \mathcal{T}_g denote the **tangential variety of** Γ_g , defined as the union of the tangent lines to Γ_g . One of the problems that we will be concerned with in these notes is the following.

Problem 3. Describe the defining equations and the Betti table of \mathcal{T}_q .

1.1. The local description of Γ_g , \mathcal{T}_g . Restricting the Veronese map ν_g in (1) to the affine chart x = 1 yields a local parametrization of Γ_g via

$$t \mapsto [1:t:\cdots:t^g] = (t,t^2,\cdots,t^g),$$

where $[\cdots]$ represents projective notation, and (\cdots) represents affine notation. The tangent directions to Γ_g are determined by differentiating with respect to t, so \mathcal{T}_g is described in the affine chart $z_0 = 1$ by

$$(t,s) \longrightarrow (t,t^2,\cdots,t^g) + s \cdot (1,2t,\cdots,gt^{g-1}) = (t+s,t^2+2ts,\cdots,t^g+gt^{g-1}s).$$
 (3)

Since \mathcal{T}_g is irreducible, one can use the local description above to check when a homogeneous polynomial belongs to $I(\mathcal{T}_g)$. This observation can be applied to check that the quadratic equations constructed below vanish along \mathcal{T}_g . Let

$$\Delta_{i,j} = \det \begin{bmatrix} z_i & z_j \\ z_{i+1} & z_{j+1} \end{bmatrix}, \text{ for } 0 \le i < j \le g-1,$$

and define

$$Q_{i,j} = \Delta_{i+2,j} - 2 \cdot \Delta_{i+1,j+1} + \Delta_{i,j+2}, \text{ for } 0 \le i < j \le g - 3.$$
(4)

CLAUDIU RAICU

Exercise 4. Check that $Q_{i,j} \in I(\mathcal{T}_g)$ for all $0 \le i < j \le g - 3$.

Remark 5. As we'll see later, the quadrics constructed above will generate, in most cases, the ideal $I(\Gamma_g)$. The exceptions are when $g \leq 4$, or when char(\mathbf{k}) $\in \{2, 3\}$.

1.2. Characteristic zero interpretation of Γ_g , \mathcal{T}_g . Suppose that $\operatorname{char}(\mathbf{k}) = 0$ (or more generally, that the binomial coefficients $\binom{g}{i}$, $i = 1, \dots, g-1$, are invertible in \mathbf{k}), and consider the vector space of homogeneous forms of degree g in the variables X, Y. Since the binomial coefficients are invertible in \mathbf{k} , one can write each such form uniquely as

$$F(X,Y) = z_0 \cdot X^g + z_1 \cdot \binom{g}{1} \cdot X^{g-1}Y + \dots + z_i \cdot \binom{g}{i} \cdot X^{g-i}Y^i + \dots + z_g \cdot Y^g,$$

for $z_0, \dots, z_g \in \mathbf{k}$. Notice that F(X, Y) is a power of a linear form, namely $F(X, Y) = (aX + bY)^g$, if and only if

$$z_0 = a^g, \ z_1 = a^{g-1}b, \cdots, \ z_i = a^{g-i}b^i, \cdots, \ z_g = b^g$$

It follows that Γ_g parametrizes (up to scaling) binary forms F(X, Y) that factor as a power L^g of a linear form L in X, Y.

Exercise 6. Check that \mathcal{T}_g parametrizes (up to scaling) binary forms F(X, Y) that factor as a product $L_1^{g-1} \cdot L_2$, where L_1, L_2 are linear forms in X, Y.

In the case g = 3, it follows that \mathcal{T}_3 parametrizes cubic forms with a double root (in \mathbf{P}^1). This is a quartic surface in \mathbf{P}^3 , defined by the vanishing of the discriminant of F:

$$-3z_1^2 z_2^2 + 4z_0 z_2^3 + 4z_1^3 z_3 - 6z_0 z_1 z_2 z_3 + z_0^2 z_3^2 = 0.$$
 (5)

If char(\mathbf{k}) = 2, this equation becomes $(z_0z_3 - z_1z_2)^2 = 0$, $I(\mathcal{T}_3) = \langle z_0z_3 - z_1z_2 \rangle$, and $\mathcal{T}_3 \simeq \mathbf{P}^1 \times \mathbf{P}^1$. The following section describes more generally the situation in characteristic 2.

1.3. The Betti table of \mathcal{T}_g in characteristic 2. Suppose char(\mathbf{k}) = 2 and consider the matrix of linear forms

$$M = \begin{bmatrix} z_0 & z_1 & \cdots & z_{g-2} \\ z_2 & z_3 & \cdots & z_g \end{bmatrix}.$$
 (6)

We claim that the 2 × 2 minors of M vanish on \mathcal{T}_g . As noted earlier, it suffices to check this assertion on the chart (3). Evaluating M on the point of \mathcal{T}_g parametrized by (t, s) we obtain

$$M(t,s) = \begin{bmatrix} 1 & t & t^2 & t^3 & \cdots & t^{g-2} \\ t^2 & t^3 & t^4 & t^5 & \cdots & t^g \end{bmatrix} + s \cdot \begin{bmatrix} 0 & t & 0 & t^3 & \cdots & (g-2) \cdot t^{g-2} \\ 0 & t^3 & 0 & t^5 & \cdots & g \cdot t^g \end{bmatrix}$$

KOSZUL MODULES

Since the second row of M(t,s) is obtained from the first by multiplying by t^2 , we get the desired conclusion. The 2 × 2 minors of M define a rational normal scroll S of dimension 2, so that $\mathcal{T}_g \subseteq S$. Since dim $(\mathcal{T}_g) = 2$, it follows that $\mathcal{T}_g = S$. It follows that the minimal resolution of \mathcal{T}_g is given by an Eagon–Northcott complex, and the Betti table takes the form

Note that $I(\mathcal{T}_g)$ is generated in this case by $\begin{pmatrix} g-1\\ 2 \end{pmatrix}$ quadrics, so that the $\begin{pmatrix} g-2\\ 2 \end{pmatrix}$ quadrics defined in (4) are not enough to generate $I(\mathcal{T}_g)$.

1.4. The Betti numbers of \mathcal{T}_g for char(k) $\neq 2$. If char(k) $\neq 2$, we will see that the homogeneous coordinate ring of \mathcal{T}_g is Gorenstein of Castelnuovo–Mumford regularity 3, that is, the Betti table of \mathcal{T}_g has the following shape

with $b_{i,1} = b_{g-2-i,2}$ for $i = 1, \dots, g-3$. In order to understand the Betti table, it is then sufficient to study the second row (that is, $b_{\bullet,2}$). The following theorem, whose proof we'll discuss later, completely characterizes the (non-)vanishing behavior of the Betti numbers of \mathcal{T}_q .

Theorem 7. Suppose that $p = char(\mathbf{k}) \neq 2$. If p = 0 or $p \geq \frac{g+2}{2}$, then

$$b_{i,2}(\mathcal{T}_g) \neq 0 \quad \Longleftrightarrow \quad \frac{g-2}{2} \le i \le g-3.$$
 (8)

If $3 \le p \le \frac{g+1}{2}$, then

$$b_{i,2}(\mathcal{T}_g) \neq 0 \quad \iff \quad p-2 \leq i \leq g-3.$$
 (9)

Notice that for p = 3 and $g \ge 5$, we have $b_{1,2}(\mathcal{T}_g) \ne 0$, so the ideal $I(\mathcal{T}_g)$ requires cubic minimal generators!

Exercise 8. Show that if $p \neq 2$ then $b_{1,1}(\mathcal{T}_g) = \begin{pmatrix} g-2\\ 2 \end{pmatrix}$, and (4) gives all the quadrics vanishing on \mathcal{T}_g .

Example 9. To illustrate the dependence of the Betti numbers of \mathcal{T}_g on the characteristic, consider the case g = 5. If char(\mathbf{k}) $\neq 2, 3$, it follows from the Exercise above and Theorem 7 that $\beta(\mathcal{T}_5)$ is

	0	1	2	3
0	1	_	_	_
1	_	3	_	_
2	_	—	3	—
3	-	_	_	1

so that \mathcal{T}_5 is a complete intersection of three quadrics. If char(\mathbf{k}) = 3 then it can be checked that the Betti table is

while for char(\mathbf{k}) = 2, we have seen that $\beta(\mathcal{T}_5)$ i

There is one part of Theorem 7 that can be checked using ideas from Section 1.3:

Exercise 10. Show that if p < g then the 2×2 minors of

$$\begin{bmatrix} z_0 & z_1 & \cdots & z_{g-p} \\ z_p & z_{p+1} & \cdots & z_g \end{bmatrix}$$
(10)

vanish on \mathcal{T}_g . Show that these minors cut out a scroll \mathcal{S} of dimension p, and conclude that $b_{i,1}(\mathcal{S}) \neq 0$ for $1 \leq i \leq g - p$. Deduce the corresponding non-vanishing for $b_{i,1}(\mathcal{T}_g)$, and derive (using the Gorenstein property) the implication " \Leftarrow " in (9).