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3
Bounds and G-Closures

In structural optimization, the effective properties of layouts are controls:
An optimal structure adapts itself to the local fields. The layout is no longer
periodic but almost periodic function. Here we introduce the corresponding
technique which is the G-convergence of a sequence of linear operators.

In control problems, it is essential to know the range of effective prop-
erties. Here we establish some bounds for the effective tensors. We also
introduce the notion of the G-closure: the set of effective tensors of a com-
posite with arbitrary microstructures.

3.1 Effective Tensors: Variational Approach

Here we compute the effective tensors from the variational principles and
we establish inequalities for these tensors.

3.1.1 Calculation of Effective Tensors

The Energy of a Homogenized Body

Consider the sequence σε of periodic layouts. The solution wε of the con-
ductivity equations is a minimizer of a corresponding variational functional
(2.1.23): ∫

Ω

(W (σε,∇wε) + fwε), (3.1.1)
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where
W (σε,∇wε) =

1
2
∇wε · σε∇wε.

Also, the solution w0 (2.2.5) minimizes the energy of the homogenized body:∫
Ω

(W (σ∗,∇w0) + fw0). (3.1.2)

The Euler–Lagrange equation for the last functional, ∇ · σ∗∇w0 = f, co-
incides with the homogenized equation.

The minimizer wε of the variational problem (3.1.1) tends to the mini-
mizer w0 of the homogenized medium when ε→ 0. Hence, the sequence of
Lagrangians {W (σε,∇wε)− fwε} tends to the Lagrangian W (σ∗,∇w0)−
fw0. In other words, the average of the energy over a small region in an
inhomogeneous body is arbitrarily close to the energy of an equivalent ho-
mogeneous material1.

The sequence of energies weakly converges (in L1(Ω)) to the energy of
the homogenized material

〈W (σε,∇wε)〉⇁W (σ∗,∇w0). (3.1.3)

The last relationship can be rewritten as either

〈eε · σεeε〉⇁ 〈e0〉 · σ∗〈e0〉

or
〈jε · σ−1

ε · jε〉⇁ 〈j0〉 · σ−1
∗ · 〈j0〉.

Essentially, these formulas introduce the effective tensor σ∗. One can check
that this definition is equivalent to the earlier definition of the effective
tensor as the proportionality coefficients between the averaged current and
field (Bensoussan et al., 1978; Jikov et al., 1994).

Remark 3.1.1 The symmetric form eε · jε of the energy deals explicitly
only with the currents and fields but not with the properties. The limiting
equality (3.1.3) takes the form:

〈eε · jε〉⇁ 〈e0〉 · 〈j0〉.

This representation looks surprising because the operation of integration
(averaging) commutes with the scalar product operation. This relation fol-
lows from the variational principle; it will be analyzed and explained later
using the theory of compensated compactness(see Chapter 7).

1Generally speaking, these energies can differ by a null-Lagrangian, that is, by a term
for which the Euler–Lagrange equation is identically zero (see the discussion in Chapters
5, 7, and 12).
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Calculation of the Effective Tensor Using Variational Approach

We use the variational principle to compute the effective tensor because a
cell of periodicity Ω in an inhomogeneous medium stores the same amount
of energy as the effective material:

〈e · σe〉 = 〈e〉 · σ∗〈e〉.

This equation can be used to determine the effective properties tensor itself.
For example, applying a field e = i1 of unit magnitude and calculating the
energy in the unit cell, we find that this energy is equal to the upper-left
element σ∗11 of the tensor σ∗.

This element is the cost of the variational problem (3.1.2):

(σ∗)11 = min
e∈E

〈e · σe〉, (3.1.4)

where

E = {e : ∇× e = 0, 〈e〉 = i1, e is 1-periodic} . (3.1.5)

Repeating this procedure several times with differently oriented external
fields e, one can calculate all elements of σ∗.

3.1.2 Wiener Bounds

The variational method allows us to derive the bounds for coefficients of the
effective tensor. Indeed, any admissible trial function etrial(x) that satisfies
(3.1.5) provides an upper bound for a diagonal coefficient of σ∗ due to
(3.1.4).

The simplest bound is given by a constant trial function

etrial(x) = constant(x) = i1 ∀x (3.1.6)

that obviously belongs to the set E (see (3.1.5)). If we substitute etrial into
(3.1.4) and recall that σ(x) = σ(x)I, we obtain

(σ∗)11 ≤ 〈i1 · σi1〉 = 〈σ11〉.

Varying the orientation of the vector of i, we obtain the matrix inequality:

σ∗ ≤ 〈σ〉. (3.1.7)

Particularly, the maximal eigenvalue of σ∗ is bounded from above by the
maximal eigenvalue of 〈σ〉.

For a composite assembled from several materials with volume fractions
mi and conductivity tensors σi we have

〈σ〉 =
N∑

i=1

miσi = σa, (3.1.8)
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where subindex a denotes the arithmetic mean. The bound (3.1.7) is called
the Reuss bound (Reuss, 1929) or the arithmetic mean bound.

The dual variational principle (Thompson’s principle) also determines a
bound for the effective tensor σ∗. The diagonal coefficient β11

∗ of the inverse
tensor β = σ−1 is

β11
∗ = min

j∈J
〈j · σ−1j〉,

where
J = {j : ∇ · j = 0, 〈j〉 = i1, j is 1-periodic} .

Thompson’s principle leads to upper estimates of the coefficients of the
inverse tensor σ−1

∗ (which are the lower estimates of the tensor σ∗). Again,
using the constant trial function, one obtains the inequality

β11
∗ ≤ 〈i1 · σ−1i1〉,

which leads to

σ−1
∗ ≤ 〈σ−1〉 =

N∑
i=1

miσ
−1
i = σ−1

h ,

where

σh =

(
N∑

i=1

miσ
−1
i

)−1

(3.1.9)

denotes the harmonic mean. This bound is called the Voigt bound (Voigt,
1928) or the harmonic mean bound.

Together, inequalities (3.1.7) and (3.1.9) provide two-sided bounds of the
range of variation of the effective properties tensor:

σh ≤ σ∗ ≤ σa. (3.1.10)

The range [σh,σa] is called the Wiener box. It depends only on the prop-
erties of the initial materials and their fractions in the composite. The
inequalities (3.1.10) are valid for any composite regardless of its geometry;
we call them geometrically independent bounds. These inequalities are also
called Wiener inequalities (Wiener, 1912).

Remark 3.1.2 Similar bounds can be established for other equilibria that
satisfy a minimum variational principle. Indeed, the constant trial function
similar to (3.1.6) trivially satisfies any linear differential restrictions.

Note that the Wiener bounds are invariant to interchanging the proper-
ties tensors with their inverses:(

σ−1
)

h
≤ σ−1

∗ ≤
(
σ−1

)
a
.

The equivalence follows from obvious identities(
σ−1

)
h

= (σa)−1
,
(
σ−1

)
a

= (σh)−1
.

They demonstrate that the upper bound for the “direct” tensor σ becomes
the lower estimate for the inverse tensor σ−1 and vice versa.
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Bounds on Composites’ Properties

The derived Wiener bounds are the simplest examples of the bounds on
effective properties. More complicated procedures take into account the
differential properties of the acting fields like the curlfree nature of the
fields e. In this book, we will develop several methods of this kind. However,
a number of the approaches is not discussed because our main focus is
structural optimization. Instead, we refer to the collections and monographs
(Hashin, 1970b; Christensen, 1979; Berdichevsky, 1983; Nemat-Nasser and
Hori, 1993; Berdichevsky et al., 1999; Markov and Preziosi, 1999; Markov
and Inan, 1999) where the reader can find these approaches.

A number of papers deals with bounds on the overall properties of com-
posites from nonlinear materials. We mention (Hashin, 1983; Talbot and
Willis, 1985; Ponte Castañeda and Willis, 1988; Bergman, 1991; Hashin,
1992; Talbot and Willis, 1992; Bourgeat et al., 1995; Khruslov, 1995; Olĕınik,
Yosifian, and Temam, 1995; Talbot, Willis, and Nesi, 1995; Talbot and
Willis, 1995; Telega, 1995; Zhikov, 1995; Ponte Castañeda, 1996; Ponte
Castañeda, 1997; Talbot and Willis, 1997; Milton and Serkov, 1999; Tor-
quato, 1999) where a number of bounding methods is developed.

3.2 G-Closure Problem

3.2.1 G-convergence

Definition

Generalization of the homogenization procedure for linear operators leads
to the introduction of the G-convergence. The theory of G-convergence
studies the behavior of sequences of linear operators Ls and of correspond-
ing solutions ws of the boundary value problems:

Lsws = f, in Ω, ws|∂Ω = ρ. (3.2.1)

The family of the conductivity operators in inhomogeneous media

Ls = ∇ · σ(χs)∇,

where χs is periodic in the cube Ωs with side 1
2s , gives an example of such

an operator sequence. The almost periodic layout gives another example.
Consider a sequence {Ls} of the operators (3.2.1) and the sequence of

their solutions {ws = (Ls)−1f}. Suppose that the sequence of the solutions
converges weakly (in H1) to a function w0:

ws ⇁ w0 weakly in H1(Ω).
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Definition 3.2.1 The weak convergence of solutions ws = (Ls)−1f im-
plies a certain convergence of the operator’s sequence, which is called G-
convergence:

Ls G→ L∗ if (Ls)−1f ⇁ L−1
∗ f ∀f ∈ H−1(Ω).

The limiting operator L∗ exists for a family of linear elliptic coercive
operators Ls if their solutions weakly converge, and this limit is an elliptic
operator of the same order as the operators in the sequence, (Marino and
Spagnolo, 1969; Bensoussan et al., 1978; Jikov et al., 1994).

More exactly, the sequence Ls = ∇ · σs∇ of the conductivity operators
G-converges to an operator L∗ = ∇ · σ∗∇,

Ls = ∇ · σs∇ G−→ ∇ · σ∗∇ = L∗, (3.2.2)

if the eigenvalues of tensors σs are constrained,

‖σs‖ ≤ c1, ‖σs−1‖ ≤ c2, c1 > 0, c2 > 0.

These conditions mean that the mixed materials are not ideal conductors
of insulators. They guarantee that the G-limit of a sequence of the conduc-
tivity operators is also a conductivity operator.

The G-convergence of operators is a more general type of convergence
than homogenization, but it includes homogenization. Particularly, we can
view the limiting operator L∗ as the conductivity operator corresponding to
an inhomogeneous medium with infinitely fine-scale oscillating properties.
The weak limit w0 of solutions ws is the averaged potential and the G-
limiting operator is the homogenized conductivity operator that depends
on the effective conductivity σ∗.

Instead of a convergence of the conductivity operators we may consider
a convergence of the layouts {σs} that define these operators. The notion
of G-convergence can be applied to the sequence {σs}.

Definition 3.2.2 We say that the sequence of the layouts {σs} G-con-
verges to the effective layout σ∗ if the corresponding sequence L(σk) G-
converges to the conductivity operator L(σ∗), L(σs) G−→ L(σ∗); see (3.2.2).

Also, we call the layout σ∗ the G-limit of the sequence {σs}:

σs G−→ σ∗.

The homogenization procedure corresponds to the case where aG-limiting
tensor is independent of x. The G-limiting tensor σ∗ describes the conduc-
tivity of the homogenized media.

Various generalizations for the concept of G-convergence is discussed in
(Tartar, 1990; Bensoussan, Boccardo, and Murat, 1992; Dal Maso, 1993;
Pedregal, 1997; Chiheb and Panasenko, 1998); see also references therein,
and in (Răıtum, 1999).
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FIGURE 3.1. Various limits in the description of the materials layouts.

G-Convergence and Other Types of Convergence

The following examples (Figure 3.1) illustrate relationships between G-
convergence and other types of convergence of sequences of materials’ lay-
outs.

Example 3.2.1 First, we comment on the relation between the G-conver-
gence and strong convergence.

Suppose that an optimal layout Rε of conducting materials is given by a
checkerboard structure with squares of size ε made of “white” and “black”
materials with conductivities σ1 and σ2 (σ1 < σ2), respectively (Figure 3.1,
A1). The structure fills in a domain much larger than a square of the
checkerboard and is submerged into a uniform external electrical field. The
structure can be replaced with a homogeneous material with isotropic ef-
fective conductivity σ∗.

Interchange the materials in the fields and call the new structure R′ε
(Figure 3.1, B1). Consider the conductivity of the structure R′ε in the
same domain and external field. The difference w′ − w of the solutions to
the corresponding conductivity problems will be as small as the scale of
the board is. In the limit, these solutions coincide:

w − w′ → 0 as ε→ 0.

The G-convergence does not distinguish between these two layouts that
lead to equal solutions to the conductivity problem,

σ∗(Rε) = σ∗(R′ε).

However, the pointwise tensor properties of these two layouts are ex-
tremely different. The norm of the difference is maximal,

|σ(Rε)− σ(R′ε)| = σ2 − σ1 ∀x ∈ Ω,
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because the material is switched in each point of the domain.
Therefore, G-convergence does not imply the strong convergence. How-

ever, the strong convergence does imply the G-convergence (the consider-
ation is left to the reader).

Example 3.2.2 Consider the relation between weak convergence (averag-
ing) of the materials’ layouts and G-convergence. We demonstrate first that
the weak limit does not define the G-limit.

Consider a conducting plane of a good conductor σ2 with periodic square
inclusions of a bad conductor (insulator) σ1 (structure RA) and suppose
that the volume fraction of inclusions is equal to one-half (Figure 3.1, A2).
Again, consider a sequence of structures in which the size of the periodicity
element tends to zero.

The average value of conductivity 〈σ〉 (that is, the weak limit of the
conductivity layout) of the structure is 〈σ(RA)〉 = σ1+σ2

2 . The structure has
an isotropic effective conductivity σ∗(RA)= σ∗(RA)I due to its symmetry.
Physically, it is clear that the effective conductivity of the plane σ∗ will
remain close to σ2 (σ∗(RA) ≈ σ2), because the conductance is mainly
provided by the material σ2 in the connected phase.

Interchange materials in the composite and call the resulting structure
RB (Figure 3.1, B2). The average conductivity of the structures RA and
RB stays the same, because the same amounts of the materials is used, but
the effective conductivity of the structure RB is lower; σ∗(RB) < σ∗(RA)
because its conductance is now mainly determined by the first material
(σ∗(RB) ≈ σ1) that forms the connected phase.

These two structures have the same mean value of conductivity but dif-
ferent G-limits:

〈σ(RA)〉 = 〈σ(RB)〉, but σ∗(RB) < σ∗(RA).

Example 3.2.3 On the other hand, the G-limit does not determine the
weak limit either. Let us demonstrate the structures (Figure 3.1, A3,B3)
that have the same G-limit of conductivity but different mean conductivi-
ties.

Consider again the configuration RA (Figure 3.1, A2) with square inclu-
sions occupied by the bad conductor σ1. Let us increase the fraction m of
the inclusions in the element of periodicity from 1

2 to 1 and let us call the
structures obtained RA(m). The structure RB (Figure 3.1) corresponds to
the volume fraction 1

2 and is denoted RB

(
1
2

)
.

We already mentioned that

σ∗

(
RA

(
1
2

))
> σ∗

(
RB

(
1
2

))
.

Following the increase of m, RA(m) continuously decreases down to the
value σ∗(RA(1)) = σ1, which is obviously less than σ∗(RB)

(
1
2

)
. Therefore
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RA(m) meets the effective conductivity σ∗
(
RB

(
1
2

))
of the configuration

RB (Figure 3.1, B2) somewhere during this process (Figure 3.1, A3):

∃ m0 ∈
[
1
2
, 1
]

: σ∗(RA(m0)) = σ∗

(
RB

(
1
2

))
.

The two composites (Figure 3.1, A3,B3) have the same effective conductiv-
ity but different mean values of the conductivities, whereas different relative
amounts of materials are needed to obtain the same effective conductivity
in the configurations RA and RB, m0 6= 1

2 .
Thus, the weak limit cannot be determined by the G-limit, either.

Moreover, the G-limit of an asymmetric structure such as a laminate
depends on the direction of the applied field, but the weak limit does not.
Thus, the G-limit cannot be determined by the weak limit. However, the
range of G-limits may depend on it.

3.2.2 G-Closure: Definition and Properties

Here we introduce the central idea of the G-closure of a set of material
properties. The G-closure is the set of effective properties of all possible
composites assembled from given materials. The problem of its description
was addressed at the turn of the twentieth century, when the bounds of all
possible effective tensors were established in (Wiener, 1912). Hashin and
Shtrikman came out with the exact description of isotropic points of G-
closure in (Hashin and Shtrikman, 1962a). Their work has demonstrated
that the bounds for the G-closure corresponds to simple explicit formulas.
Another simple example was built in (Tartar, 1975; Răıtum, 1978): we
discuss it in the next Section.

The concept of the G-closure and the term itself was introduced in (Lurie
and Cherkaev, 1981a; Lurie and Cherkaev, 1981c) as the problem of com-
pleteness of the G-limits. This consideration was motivated by the problem
of existence of an optimal layout (Lurie and Cherkaev, 1981a; Armand,
Lurie, and Cherkaev, 1984). Here we use the results of the review arti-
cle (Lurie and Cherkaev, 1986a), where the properties of G-closures are
systematically studied.

Definitions

Consider a family of materials with known properties Di, where i = 1, . . . ,
N is a parameter of the family2, and let us call this set U = {Di}.

Consider a composite assembled from these materials. Suppose that the
materials are presented in the composite with volume fractions mi. This

2The notation D for the materials’ properties emphasizes that the linear material may
correspond to an equilibrium different from conductivity. For example, elastic materials
may be considered with proper exchange in the notation.
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composite material is equivalent in the sense of G-convergence to a uniform
medium with tensor of effective properties D∗. We recall that the tensor
D∗ is independent of external fields. It is determined only by properties of
the mixed materials and by the geometrical structure of the composite.

Gm-Closure. We call the Gm-closure of the set U the set of all possible val-
ues of the effective tensors D∗ that correspond to arbitrary microstructures
with the fixed volume fractions of materials. We denote the Gm-closure of
U by GmU . It depends only on the set U of the properties of those materials
and on their volume fractions mi in a composite:

GmU = Gm(Di,mi).

Any tensor D∗ ∈ GmU is characterized by angles of orientation of the
coordinate system and by rotationally invariant parameters such as the
eigenvalues. The Gm-closure set depends only on these invariants, and it is
represented as a domain in a corresponding finite-dimensional space. Each
microstructure corresponds to a point in this domain.

G-Closure. We define the G-closure of the set of properties of the materials,
that is, the set of possible values of the tensor D∗ corresponding to an
arbitrary microstructure and arbitrary volume fractions of the materials.
The G-closure depends only on the properties of the materials in the set
U :

GU =
⋃

mi∈m

GmU , GU = GU(Di).

The G-closures are of special interest for the study of polycrystals, where
they naturally represent a variety of all composites made from differently
oriented fragments of an anisotropic material.

Where Is the Description of Gm-Closure Used?

The following problems are examples where Gm-closures are needed:

• Gm-closures provide a priori bounds for calculation of the effective
properties of any prescribed structure. It is useful to know Gm-closu-
res dealing with structures that are either unknown or random.

• It is necessary to know the Gm-closure if a structure of a composite
is to be chosen to improve its properties.

• In structural optimization, Gm-closures describe the set of admissible
controls, because it is not known a priori what composite is the most
effective at a specific point of a construction.

Remark 3.2.1 For some optimization problems it is enough to find
only some components of the Gm-closures. For example, we could be
interested in structures of composites that store the minimal energy
in an arbitrary external field.
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We also notice that a description of the closures is often presented in an
explicit form; they are described by rather simple inequalities that connect
invariants of any possible effective tensor. On the other hand, the problem
of calculating the effective properties of a given structure typically can only
be solved numerically.

G-Closeness of Sets of Materials

Most applications deal with sets of available materials U that are not G-
closed, i.e., they do not coincide with their G-closure. We cite a few exam-
ples:

1. Discrete set that consists of several materials (the composites have
intermediate effective properties).

2. Arbitrary set of isotropic media (laminates of isotropic materials are
generally not isotropic).3

3. Set of anisotropic crystals that differ only in the orientation of their
principal axes (a polycrystal composite could be isotropic).

Finally, let us give an example of theG-closed set of conducting materials.
It is the set of anisotropic materials σ with the eigenvalues λi, i = 1, . . . d
that are restricted by two constants a and b:

0 < a ≤ λi ≤ b <∞.

Proof of the G-closeness is left to the reader.
Notice that this example is not very natural. It is much easier to find

not-G-closed sets of materials than to find a G-closed set.

Properties of G-Closures and Gm-Closures

Finiteness, Connectedness

Consider the G-closure of a set of conductivity tensors σ∗. Each tensor is
characterized by its eigenvalues λi, i = 1, . . . , d, and by angles of orienta-
tion of the tensor in space. We are interested in a description of the set
of eigenvalues only, because the orientation of an effective tensor can be
arbitrarily chosen by an orientation of the periodic structure as a whole.
It is easy to find that the Gm-closure is a closed, simply connected, and
bounded set in the space of invariants of tensor properties.4

Indeed, it is bounded by the Wiener inequalities

σhI ≤ σ∗ ≤ σaI,

3An exclusive counterexample of isotropic G-closure is discussed in Chapter 15.
4The properties discussed are valid for the G-closures of the set of linear materials

with arbitrary, not only conducting, properties. Additional consideration is needed to
describe the proper invariants of the materials’ characteristics.
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which imply that every eigenvalue belongs to the interval

λi ∈ [σh, σa] .

Therefore the G-closure is bounded.
A G-closure is connected. Indeed, any two points σA, σB of a G-closure

can be linked by a family of continuous curves that also belong to the G-
closure. These curves correspond, for example, to the effective properties
of laminates assembled from the materials σA and σB or to another family
of microstructures with variable volume fractions. Obviously, the proper-
ties of a structure continuously depend on the volume fractions. Different
curves correspond to different orientations of the normal to the layers in
the laminates. Motion along the curve corresponds to varying the frac-
tions of materials σA and σB in the composite, and the ends of the curve
correspond to the vanishing of one of the materials in the composite.

A Gm-closure set is connected, too. If σA and σB represent composites
with equal concentration of some initial materials, then a composite of σA

and σB obviously has the same concentrations of these materials, which
means that any such composite belongs to Gm-closure.

Both the G-closure and the Gm-closure contain a family of curves that
link any two points in it and that correspond to different microstructures
with different properties. Generally (but not always), the G-closures are
sets with nonempty interior in the space of eigenvalues of σ∗.

Other Properties

We notice some properties of the G-closure of a set U that are similar to
properties of convex envelopes:

1. The envelope rule: Each set U belongs to its G-closure GU :

U ∈ GU .

2. The closure rule: The G-closure of a G-closed set coincides with the
set:

G(GU) = GU .

3. The junction rule: The union of the G-closures of two sets is smaller
than or equal to the G-closure of the union of these sets:

G(U1 ∪ U2) ⊃ G(U1) ∪G(U2).

4. The swallow rule: If a set M belongs to the G-closure of the set U
(but not necessarily to U itself), then the G-closure of the set U ∪M
is equal to the G-closure of U :

M ∈ GU ⇒ G(U ∪M) = GU .
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FIGURE 3.2. Illustration of the conservation property of G-closure. The phases
have a common conductivity λ0 in the horizontal direction. The applied homo-
geneous horizontal field causes a constant field everywhere. The applied homoge-
neous vertical field causes a variable field inside the structure.

These properties are physically obvious; for example, the last one means
that if a material from the set M is in the G-closure of U , then it could
be replaced by a composite of materials from U , and therefore adding this
material to the set U does not change the G-closure. The formal proofs of
these properties are left to the reader.

The Conservation Property of the G-Closure

Consider the case where the mixed anisotropic materials are represented by
the tensors σi that all have a common eigenvalue and common eigenvector.
Let us denote the common eigenvalue by λ0 and the common eigenvector
by a. The conductivity tensors σi of mixing materials are of the form

σi = λ0 (a⊗ a) +
d∑

j=2

λi
j(a

i
j ⊗ ai

j), (3.2.3)

where j is the number of an eigenvalue, i is the number of a material, and
⊗ denotes the dyadic product as follows: C = {cij = a⊗ b if cij = aibj}.

Let us demonstrate that any matrix of material properties σ∗ from the
G-closure has the same eigenvalue and eigenvector:

σ∗ = λ0 (a⊗ a) +
d∑

j=2

λ∗j(a∗j ⊗ a∗j) ∀σ∗ ∈ G-closure.

Indeed, consider a composite with arbitrary shapes of the fragments (see
Figure 3.2) and calculate the fields in the composite in the response to the
external field e0 = γa applied in the direction a. The pair of the uniform
field

e0(x) = γa = constant(x)

and the uniform current

j(x) = λ0e0(x) = λ0γa = constant(x)
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represents a solution to the problem: These constant fields trivially sat-
isfy differential constraints, they satisfy the constitutive equations, and the
boundary conditions do not imply any discontinuities in the fields because
the only property λ0 involved in the conductance has the same value in all
fragments of the structure. Therefore, the continuity of the normal com-
ponent of the current [j] = 0 implies the continuity of this component of
the field: [j] = λ0[e] = 0. The current j that corresponds to the applied
field e is constant everywhere and is aligned with e. Informally speaking,
the fragments of the microstructure become “clear” or “invisible” in that
field. However, the microstructure manifests itself if any other field e1(∞)
is applied. This time, the current j1(x) = σ(x)e1(x) is inhomogeneous and
so is the field e1(x) (see Figure 3.2).

Remark 3.2.2 The conservation property can also be established for elas-
tic materials. We discuss an example in Chapter 15. Moreover, it is valid
even for nonlinear composites if their property λ0 in a direction depends
on the field: λ0 = λ0(e) but is constant in all fragments. The reason is the
same: The applied constant field e corresponds to the aligned current j that
is constant everywhere.

The investigation of the conservation property of G-closures can be for-
mulated as the search for properties of composites that are “stable under
homogenization” (Grabovsky and Milton, 1998). Namely, one can ask what
sets of material properties U lead to the set GU with empty interior. Such
G-closures are characterized by equalities called exact relations rather than
by inequalities. The G-closure of the materials with a common eigenvalue
and eigenvector is an example of a set with empty interior, whereas one of
the eigenvalues of the G-limit is fixed.

Several examples ofG-closures with empty interior are discussed in Chap-
ters 10 and 14. Generally, the conserved property may correspond not to
a chosen direction of an external field but to a combination of the applied
fields. For example, we demonstrate in Chapter 10 that the determinant
of a two-dimensional polycrystal is constant independent of the structure.
To obtain this conservation property we consider the mutual dependence
of the currents corresponding to two applied fields.

We also refer to (Milgrom and Shtrikman, 1989; Bruno, 1991; Cherkaev
and Gibiansky, 1992; Benveniste, 1994; Benveniste, 1995), where various
exact relations on G-closures have been found. Recent papers (Grabovsky
and Milton, 1998; Grabovsky and Sage, 1998; Grabovsky, 1998) treat this
problem generally and suggest algebraic algorithms for a systematic search
of exact relations.
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FIGURE 3.3. G-closure set of two isotropic conductors in two dimensions.

3.2.3 Example: The G-Closure of Isotropic Materials

We construct the G-closure of a set of isotropic conductors in two dimen-
sions by using only the simplest properties of G-closures. This set was
constructed in (Tartar, 1975; Răıtum, 1978).

Consider a composite of two isotropic materials with conductivities σ1

and σ2 (0 < σ1 ≤ σ2 <∞) mixed in an arbitrary proportion. The conduc-
tivity of the composite is described by the effective properties tensor σ∗.
The material properties of the effective conductivity are presented by the
pair λ1, λ2 of its eigenvalues, λ1 ≤ λ2. Let us describe the domain in the
λ1, λ2–plane that corresponds to the G-closure.

The greater eigenvalue λ2 of an effective tensor of a composite is less
than the arithmetic mean of the materials’ conductivities (see (3.1.8)), and
the smaller eigenvalue of an effective tensor is greater than the harmonic
mean of them:

λ2 ≤ m1σ1 +m2σ2, λ1 ≥
1

m1
σ1

+ m2
σ2

.

If we exclude the volume fractions m1 ≥ 0, m2 = 1−m1 ≥ 0 from the last
two inequalities, we obtain the bound

σ1 ≤ λ1 ≤
σ1σ2

σ2 + σ1 − λ2
≤ λ2 ≤ σ2. (3.2.4)

The last inequalities provide a complete characterization of the G-closure
(see Figure 3.3). Indeed, we can demonstrate the specific composite corre-
sponding to each point of its boundary: It is a laminate with a properly
chosen volume fraction. The set of laminates corresponds to the equality
(see Figure 3.3)

λ1 =
σ1σ2

σ2 + σ1 − λ2
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because the eigenvalue corresponding to the normal component is aver-
aged as a harmonic mean, and the eigenvalue corresponding to the tangent
component as an arithmetic mean.

The geometric interpretation of this result is as follows. The Gm-closure
set lies inside the Wiener box, which parametrically depends on m. Hence
the G-closure lies inside the union of all rectangles corresponding to all vol-
ume fractionsm ∈ [0, 1] (see Figure 3.3). The boundary of this set is drawn
by the motion of two symmetric nondiagonal vertices of those rectangles
with coordinates σa, σh and σh, σa, respectively. Only the coordinates of
these nondiagonal corners of Gm-closure are of importance. Fortunately,
these points correspond to the effective properties of the known (laminate)
structure. Therefore, laminates form at least a part of the boundary of the
G-closure.

In the two-dimensional case, the G-closure is a domain in the plane of
eigenvalues of σ∗. The laminates describe the entire boundary of the G-
closure because the set of their properties corresponds to a closed curve in
that plane.

Simple-Connectedness

To conclude, we demonstrate that a G-closure is simply connected (it does
not contain “holes” inside). The simplest way to demonstrate this is to
build a class of microstructures that cover all points inside the domain
(3.2.4). We use a two-step procedure to imitate a conductivity tensor with
eigenvalues σ′, σ′′ ∈ G-closure. First, we build isotropic composites σis with
all intermediate properties σ′ ∈ [σ1, σ2] (they correspond, for example, to
a class of symmetric microstructures like checkerboards with the volume
fraction of one of the materials varying from zero to one). Second, we build a
laminate σlam; we choose the volume fraction of materials in that laminate
so that one of its eigenvalues becomes equal to σ′ (the other eigenvalue σl2

is equal to σl2 = σ1σ2
σ1+σ2−σ′ ). Now mix the materials σis and σlam. Note

that one of the eigenvalues of σlam is equal to the eigenvalues of σis. By
the conservation property, one eigenvalue of the composite is equal to σ′

(see (3.2.3)), and the other varies in the interval [σ′, σl2] when the volume
fraction of the isotropic phase changes from one to zero. Particularly, we can
choose this fraction to make this eigenvalue equal to the given parameter
σ′′. Therefore, the set of composites of this kind imitates all points of the
G-closure (see Figure 3.3).

Three-Dimensional Case

In the three-dimensional case, the laminates correspond to curves on the
boundary surface of the G-closure. We leave the complete description of
three-dimensional G-closure for Chapter 10, because it requires a special
technique.
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FIGURE 3.4. The domain of attainability of the current jx1 , jx2 . The circles
correspond to the fixed volume fractions of materials, the lens corresponds to the
G-closure.

3.2.4 Weak G-Closure (Range of Attainability)

Two-Dimensional Case

Another way to characterize the G-closure is to observe the range of the
currents j = [jx1 , jx2 ] that corresponds to the unit field e = [1, 0] and all
possible composites. We use the relation j = σ∗e. The current is equal to
j = [σ11, σ12]. We express the elements of the tensor through its eigenval-
ues λ1 and λ2, and the orientation of an eigenvector Φ:

jx1 =
λ1 + λ2

2
+
λ1 − λ2

2
cos 2Φ, jx2 =

λ1 − λ2

2
sin 2Φ.

The set of all possible composites with the fixed volume fractions of
materials corresponds to the vector j that belongs to the disk:

F (λ1), λ2,m) =
(
j1 −

λ1 + λ2

2

)2

+ j22 −
(
λ1 − λ2

2

)2

≤ 0;

where the eigenvalues λ1 and λ2 take the extreme values λ1 = (mσ−1
1 +(1−

m)σ−1
2 )−1 and λ2 = mσ1 +(1−m)σ2 equal, respectively, to the arithmetic

and harmonic means of the mixed materials. The differently oriented lami-
nates correspond to the circumference, and the other structures correspond
to the inner points of the disk (see Figure 3.4).

When the volume fraction m varies, the family of circles forms a domain
of attainability. This domain is just the envelope of the family of circles. We
find it by solving the equation ∂

∂mF (λ1, λ2,m) = 0 and excludingm ∈ [0, 1].
The equation of the domain of attainability is:

|jx2 | ≤
√
jx1(σ1 + σ2 − jx1)−

√
σ1σ2.

This domain of attainability is shown in Figure 3.4. It is shaped like a lens;
the vertices correspond to the pure materials σ1 and σ2.

The Three-Dimensional Case

The three-dimensional case is considered similarly. In dealing with the
range of currents, we notice that the maximal range of j corresponds to
the situation where the plane of the maximal and minimal eigenvalues



76 3. Bounds and G-Closures

Jx
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Jz

FIGURE 3.5. The domain of attainability of the current in the three-dimensional
case. The inner sphere corresponds to the fixed volume fractions; the exterior
surface corresponds to the weak G-closure.

of σ∗ includes both vectors e and j. In that plane the problem is two-
dimensional. Therefore, all the previous results are valid. The value of the
intermediate eigenvalue is irrelevant. The domain of attainability in the
three-dimensional case is a surface of revolution (Figure 3.5)

√
j2x2

+ j2x3
=
√
jx1(σ1 + σ2 − jx1)−

√
σ1σ2,

where x1 is the direction of the given field.
Notice that the boundary points of the domain correspond to laminate

structures. Hence, the class of laminates is sufficient for the solution to a
class of structural optimization problems that correspond to optimization
of the behavior of electrical fields. A similar concept was used in (Răıtum,
1989) to prove the existence of the optimal solution in the class of controls
that consists of initial materials and their laminates. The set of layouts
corresponding to attainability of currents is called the weak G-closure.

The advanced generalization of the concept of the weak G-closure to the
nonlinear materials and additional references can be found in (Milton and
Serkov, 1999).

3.3 Conclusion and Problems

We established simple bounds on the effective properties tensor and intro-
duced the G-closures: sets of all possible effective tensors that correspond to
arbitrary microstructures of a composite assembled of material with fixed
properties. Their topological properties were studied, and an example was
presented.

Now we are prepared to discuss structural optimization problems for
conducting media.
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Problems

1. How many external fields are needed to compute all coefficients of
two- and three-dimensional conductivity tensors by calculating the
energy? Suggest an algebraic procedure to calculate the eigenvalues
and eigenvectors of an effective tensor.

2. Show that the G-closure is bounded if the mixed materials have finite
conductivities.

3. Prove the topological properties of G-closures.

4. Describe the G-closure for the set of two anisotropic materials with
conductivities

σ1 =
(
λ 0
0 λ1

)
and σ2 =

(
λ 0
0 λ2

)
.
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