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1
Relaxation of One-Dimensional
Variational Problems

This introductory chapter gives a brief review of nonconvex variational
problems. We examine stability of solutions to one-dimensional extremal
problems associated with ordinary differential equations. The reader famil-
iar with nonconvex variational problems can skip this chapter. However,
this material is necessary to understand the one-dimensional analogue of
the multidimensional ill-posed problems that are in the focus of this book.

Optimizing design is a variational problem. Such problems ask for the
minimization of a functional that measures the quality of a structure choos-
ing by a proper control function (the materials’ layout). In this chapter we
detect and describe unstable solutions of these extremal problems in a one-
dimensional setting. The solutions to these problems are characterized by
fine-scale oscillations. To deal with these oscillations, we introduce a relax-
ation procedure. Relaxation essentially means the replacement of an unsta-
ble optimization problem with another that has a classical (differentiable)
solution.

1.1 An Optimal Design by Means of Composites

Let us start with an example that demonstrates why composites appear in
optimal design. Here we find an optimal solution using only commonsense
arguments.
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The Elastic Beam

Consider an elastic beam with variable stiffness d(x). The beam is loaded
by the load f(x), and its ends x = 0 and x = 1 are simply supported.
The deflection w = w(x) of the points of the beam satisfies the classical
boundary value problem (see, for example (Timoshenko, 1970))

θ = dw′′, θ′′ = f,
w(0) = w(1) = 0, θ(0) = θ(1) = 0, (1.1.1)

where θ = θ(x) is the bending moment and d = d(x) is the material’s
stiffness at point x. Suppose that the beam can be made of two materials
with effective stiffness d1 and d2, so that the stiffness takes one of these
two values, d(x) = d1 or d(x) = d2 at each point x ∈ [0, 1]. The deflection
w depends on the layout d = d(x) and the loading f = f(x): w = w(f, d).

Optimization Problem

Let us state the following optimal design problem: Lay out the given ma-
terials with the stiffness d1 and d2 along the beam to approximate in the
best way some desired function w∗ with the deflection w(f, d). Specifically,
we want to minimize the square of the L2-norm of the difference between
the actual displacement w(d, f), which depends on the layout d = d(x) and
the loading f , and the desired function1 w∗(x):

I = min
d

∫ 1

0

(w(d, f) − w∗)
2
. (1.1.2)

Let us assume that the desired function w∗ is the deflection of a homoge-
neous beam of an intermediate stiffness d∗,

d∗ =
d1 + d2

2
, (1.1.3)

which is subject to the same boundary conditions and the same loading f :
w∗ = w∗(d∗, f). The deflection w∗ satisfies the equation

θ = d∗(x)w′′∗ , θ′′∗ = f,
w∗(0) = w∗(1) = 0, θ∗(0) = θ∗(1) = 0, (1.1.4)

similar to (1.1.1). The optimization problem becomes

I = min
d(x)

∫ 1

0

(w(d, f)− w (d∗, f))2. (1.1.5)

1The symbol “dx” of the differential is omitted in the integrals over the explicitly
defined interval of the independent variable x.
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FIGURE 1.1. Oscillation of the pointwise stiffness of an optimal inhomogeneous
beam.

The Minimizing Sequence

The solution to the optimization problem (1.1.4) is intuitively obvious: One
should mix the given materials d1 and d2 in special proportions m1 and
m2 = 1−m1 to imitate the intermediate stiffness d∗ of the beam and there-
fore to make the nonnegative cost I (see (1.1.2)) arbitrarily close to zero.
The stiffness becomes an oscillatory function of x that alternates between
the values d1 and d2. The approximation improves when the frequency of
the oscillations increases. Therefore, an optimal design does not exist: the
higher the frequency, the better (see Figure 1.1). Formally, the minimizing
layout of the material corresponds to the limit limε→0 dε(x), where

dε(x) =
{
d1 if x ∈ [nε, (n+m1)ε],
d2 if x ∈ [(n+m1)ε, (n+ 1)ε], n = 1, . . .N,

ε � 1 is a small parameter, and N =
[

1
ε

]
. The remaining problem is

the computation of the needed proportion m1. We will demonstrate that
m1 6= 1

2 , contrary to the intuitive expectation.

Homogenization

This consideration poses the question of an adequate description of rapidly
oscillating sequences of control. To describe these sequences we use the
method of homogenization, which simplifies the problem: Details of the
behavior of minimizing sequences become intractable, and the equations
depend only on average characteristics of them.

Let us derive equations for an average deflection 〈w〉 of the beam. The
averaging operator 〈 〉 is introduced by the formula

〈z(x)〉 =
1

2ε′

∫ x−ε′

x+ε′
z(ξ)dξ, (1.1.6)

where [x− ε′, x+ ε′] is the interval of the averaging and z = z(x) is the
averaged variable.

We suppose that the interval ε′ is much larger than the period ε of
oscillation of the control but much smaller than the length of the beam:

0 < ε� ε′ � 1. (1.1.7)
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Homogenized Equation

To derive the homogenized equation for the average deflection 〈w〉, we
mention that the variable θ(x) is twice differentiable (see (1.1.1)); therefore
it is continuous even if d(x) is discontinuous:

〈θ〉 (x) = θ(x) +O(ε′).

This implies that discontinuities in d(x) are matched by discontinuities in
w′′(x), leaving the product θ = d(x)w′′(x) continuous. Therefore 〈w′′(x)〉
is computed as

〈w′′(x)〉 =
〈
θ(x)
d(x)

〉
= θ(x)

〈
1

d(x)

〉
+O(ε′). (1.1.8)

Notice that we take the smooth function θ(x) out of the averaging because
its derivation is arbitrarily small in the small interval of averaging.

Note also that the function 1
d(x) takes only two values, and it alternates

faster than the averaging (1.1.7). Therefore its average is found (up to terms
of the order of ε′) as〈

1
d(x)

〉
=
m1

d1
+
m2

d2
, m2 = 1−m1. (1.1.9)

The homogenized equation for the average value 〈w〉′′ of the deflection
of the beam can easily be found from (1.1.1), (1.1.8), and (1.1.9):

θ =
〈

1
d

〉−1 〈w〉′′ , θ′′ = f,
〈w(0)〉 = 〈w(1)〉 = 0, θ(0) = θ(1) = 0

(1.1.10)

(these equations are satisfied up to ε′). They are called the homogenized
equations for the composite beam.

Homogenized Solution

We are able to approximate the desirable deflection w∗ by the deflection
of an inhomogeneous beam. Comparing (1.1.4) and (1.1.10), we conclude
that the solutions to these two equations are arbitrarily close to each other
if ε′ → 0 and if the fraction m1 corresponds to the equality

1
d∗

=
m1

d1
+
m2

d2
. (1.1.11)

Then the cost of (1.1.5) goes to zero together with ε′. Strictly speaking, the
minimizing layout does not exist: the smaller the period, the better. The
actual minimum of the functional I is not achievable. Nothing bounds the
period ε of oscillation of d(x) from zero.
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The minimizing sequence corresponds to the optimal volume fraction m1

that can be found from (1.1.3), (1.1.11):

m1 =
d1

d1 + d2
.

Notice that m1 6= 1
2 and 〈d(x)〉 = d2

1+d2
2

d1+d1
6= d∗.

Remark 1.1.1 In a general situation the fraction m1 may vary from point
to point. Then the outlined homogenization procedure introduces a smoothly
varying quantity m(x) (the volume fraction of the material in the compos-
ite) that describes the fine-scale oscillating sequence of control.

Remark 1.1.2 The described solution with fine-scale oscillations is an ex-
ample of so-called chattering controls, which are well known in the theory
of one-dimensional control problems (Gamkrelidze, 1962; Young, 1969).
Chattering regime of control occurs when the interval of the independent
variable x is split into infinitely many subintervals, and each of them is
characterized by alternation of the value of control. The value of the mini-
mizing functional decreases as the scale of alternation of intervals becomes
finer.

1.2 Stability of Minimizers and the Weierstrass
Test

1.2.1 Necessary and Sufficient Conditions

Extremal Problems

Consider an extremal problem:

I(u) = min
u(x)

∫ 1

0

F (x, u(x), u′(x)), u(0) = u0, u(1) = u1, (1.2.1)

where x is a point of the interval [0, 1], u(x) is a function that is differen-
tiable almost everywhere in [0, 1], and F is a function of three arguments
called the Lagrangian. We assume that the Lagrangian F is a continuous
and almost everywhere differentiable function of its arguments. Problem
(1.2.1) asks for a function u0(x) that delivers the minimum of I(u):

I(u0) ≤ I(u) ∀u(x).

This function is called the minimizer.
There are several approaches to the solution of this extremal problem

(see, for example (Ioffe and Tihomirov, 1979)). The simplest approach is
based on sufficient conditions. One guesses solutions using special algebraic
properties of the Lagrangian F ; typically, the convexity of F is used.



8 1. Relaxation of One-Dimensional Variational Problems
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FIGURE 1.2. (A) The definition of convexity; (B) graph of a nonconvex function;
(va,vb)–interval of nonconvexity.

Convexity

Let us briefly discuss convexity. For a detailed exposition of properties of
convex functions and convex functionals the reader is referred to (Krasno-
sel′skĭı and Rutickĭı, 1961; Rockafellar, 1997; Ekeland and Temam, 1976;
Hardy, Littlewood, and Pólya, 1988).

Here we define convexity through Jensen’s inequality. We consider a con-
tinuous function F (v) of an n-dimensional vector argument v = [v1, . . . , vn].
Suppose that v varies in the whole space Rn.

Definition 1.2.1 The function F (v) is convex at the point v0 if the fol-
lowing inequality (called Jensen’s inequality) holds:

F (v0) ≤
1
r

r∑
k=1

F (v0 + vk) ∀vk :
∑

k

vk = 0. (1.2.3)

The function F (v) is strongly convex at the point v0 if (1.2.3) becomes a
strong inequality.

This inequality expresses the geometrical fact that the graph of a convex
function F lies below any secant hyperplane to that graph. The secant is
supported by the graph of F at points v0+vk (see Figure 1.2). For example,
the function F1(v) = v2 of a scalar argument2 v is convex everywhere, and
F2(v) = (v2 − 1)2 is convex at the points of the intervals [−∞,−1] and
[1,∞].

We list here several properties of the convex function that will be used
(for a detailed exposition, we refer to the mentioned books):

• A strongly convex function has only one minimum.

• For convexity of F , it is necessary and sufficient that for any point v
there exists an affine function (supporting hyperplane)

l(v) = a1v1 + . . .+ anvn + a0

2As a rule, we use Roman letters for scalar and boldface letters for vectors.
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such that the graph F (v lies above the graph of l(v) or coincide with
it,

F (v) = l(v), F (v′) ≥ l(v′) ∀v′.

• If F is twice differentiable, then the eigenvalues of its Hessian

H = {Hij}, Hij =
∂2F

∂vi∂vj
, i, j = 1, . . . , n

are nonnegative: H ≥ 0. The limiting case when F belongs to the
boundary of the domain of the convexity corresponds to the vanishing
of an eigenvalue of H or to the condition detH = 0.

Integral Form. We also use an integral form of the definition of convexity. In
the limit r→∞ Jensen’s inequality takes the form of an integral inequality.
In this case, the vectors {v1, . . . ,vr} are replaced by a vector function
ξ(x) = [ξ1(x), . . . , ξn(x)] of a scalar argument x ∈ [0, l]. In this notation,
(1.2.3) yields the following inequality.

The function F (v) is convex at point v0 if and only if the following
inequality holds:

F (v0) ≤
1
l

∫ l

0

F (v0 + ξ), ∀ξ :
∫ l

0

ξ = 0. (1.2.4)

Of course, we assume existence of the integrals in (1.2.4).
An equivalent form of Jensen’s inequality is obtained by setting v(x) =

v0 + ξ(x) and using the identity l F (v0) =
∫ l

0
F (v0). The inequality is

∫ l

0

F (v0) ≤
∫ l

0

F (v(x)) if
1
l

∫ l

0

v(x) = v0. (1.2.5)

This inequality states that the integral of a convex Lagrangian F (v) takes
its minimal value if the minimizer v is constant.

Inequality (1.2.5) introduces a convex functional of v. The properties of
convex functionals are discussed in many classical books, such as (Hardy
et al., 1988). Particularly, if f1(v) and f2(v) are convex functionals and
α1 and α2 are positive numbers, then α1f1(v) + α2f2(v) is also a convex
functional.

Convexity and the Extremal Problems

For some problems, the convexity of the Lagrangian can be immediately
used to find the solution.

Example 1.2.1 Consider the problem of the shortest path between two
points in a plane. Suppose that the coordinates of these points are A =
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(0, 0) and B = (c, d) and that the path between them is given by a curve
y = u(x). The minimal length of the path is the solution to the problem

I = min
u(x)

∫ c

0

√
1 + (u′(x))2, u(c)− u(0) =

∫ c

0

u′(x) = d. (1.2.6)

The function f(v) =
√

1 + v2 is convex. The integral
∫ c

0 v is fixed. Therefore
(see (1.2.5)) the minimal value of I corresponds to the constant minimizer
v(x), v(x) = constant(x). Applying inequality (1.2.5) to (1.2.6) and using
the constraint in (1.2.6), we find that the solution to (1.2.6) is a straight
line with slope u′(x) = d

c that passes through the prescribed starting point.
We have u(x) = d

cx. The cost is I =
√
c2 + d2.

More advanced sufficient conditions yield to isoperimetric inequalities
(Pólya and Szegö, 1951), symmetrization, Lyapunov functions, etc. If ap-
plicable, these conditions immediately detect the true minimizer. However,
they are applicable to a very limited number of problems.

Generally, there is no guarantee that sufficient conditions result in strict
inequalities that are realizable by a function u(x). If the inequalities are
not strict, they can still serve as a lower bound of the cost, but in this case
they do not lead to the minimizer.

1.2.2 Variational Methods: Weierstrass Test

More general methods are based on an analysis of infinitesimal variations
of a minimizer. We suppose that the function u0 = u0(x) is a minimizer
and replace u0 with a varied function u0 + δu, assuming that the norm of
δu is infinitesimal. The varied function u0 + δu satisfies the same boundary
conditions as u0. If indeed u0 is a minimizer, the increment of the cost
δI(u0) = I(u0 + δu)− I(u0) is nonnegative:

δI(u0) =
∫ 1

0

(F (x, u0 + δu, (u0 + δu)′)− F (x, u0, u
′
0)) ≥ 0. (1.2.7)

To effectively compute δI(u0), we also assume the smallness of δu. Vari-
ational methods yield to the necessary conditions of optimality because
it is assumed that the compared trajectories are close to each other. On
the other hand, variational methods are applicable to a wide variety of ex-
tremal problems of the type (1.2.1), called variational problems. Necessary
conditions are the true workhorses of extremal problem theory, while exact
sufficient conditions are rare and remarkable exceptions.

There are many books that expound the calculus of variations, includ-
ing (Bliss, 1946; Courant and Hilbert, 1962; Gelfand and Fomin, 1963;
Lavrent′ev, 1989; Weinstock, 1974; Mikhlin, 1964; Leitmann, 1981; Fox,
1987; Dacorogna, 1989).
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Euler–Lagrange Equations

The calculus of variations suggests a set of tests that must be satisfied by a
minimizer. These conditions express realization of (1.2.7) by various vari-
ations δu. To perform the test one must specify the type of perturbations
δu. The simplest variational condition (the Euler–Lagrange equation) is
derived by linearizing the inequality (1.2.7) with respect to an infinitesimal
small and localized variation

δu =
{
ρ(x) if x ∈ [x0, x0 + ε],
0 otherwise. (1.2.8)

Here ρ(x) is a smooth function that vanishes at points x0 and x0 + ε and
is constrained as follows:

|ρ(x)| < ε, |ρ′(x)| < ε ∀x ∈ [x0, x0 + ε].

Linearizing with respect to ε and collecting main terms, we rewrite (1.2.7)
as

δI(u0) = ε

(∫ 1

0

(
∂F

∂u
(δu) +

∂F

∂u′
(δu)′

))
+ o(ε) ≥ 0. (1.2.9)

Integration by parts of the last term on the right-hand side of (1.2.9) gives

δI(u0) = ε

∫ 1

0

S(u, u′, x)δu +
∂F

∂u′
δu

∣∣∣∣x=1

x=0

+ o(ε) ≥ 0, (1.2.10)

where
S(u, u′, x) = − d

dx

∂F

∂u′
+
∂F

∂u
. (1.2.11)

The second term on the right-hand side of (1.2.10) is zero, because the
boundary values of u are prescribed

u(0) = u0, u(1) = u1

and their variations δu|x=0 and δu|x=1 are zero.
Due to the arbitrariness of δu we conclude that a minimizer u0 must

satisfy the differential equation

S(u, u′, x) = 0, u(0) = u0, u(1) = u1, (1.2.12)

called the Euler–Lagrange equation and the corresponding boundary condi-
tions. The Euler–Lagrange equation is also called the stationary condition.
Indirectly, we assume in this derivation that u0 is a twice differentiable
function of x. We do not discuss here the properties of the Euler–Lagrange
equations for different types of Lagrangians; we refer readers to mentioned
books on the calculus of variations.

It is important to mention that the stationarity test alone does not allow
us to conclude whether u0 is a true minimizer or even to conclude that a
solution to (1.2.12) exists. For example, the function u that maximizes I(u)
satisfies the same Euler–Lagrange equation.
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The Weierstrass Test

In addition to being a solution to the Euler equation, the true minimizer
satisfies necessary conditions in the form of inequalities. These conditions
distinguish the trajectories that correspond to the minimum of the func-
tional from trajectories that correspond either to its maximum or to a
saddle point stationary solution. One of these conditions is the Weierstrass
test; it detects stability of a solution to a variational problem against strong
local perturbations.

Suppose that u0 is the minimizer of variational problem (1.2.1) that
satisfies the Euler equation (1.2.11). Additionally, u0 should satisfy another
test that uses a type of variation δu different from (1.2.8). The variation
used in the Weierstrass test is an infinitesimal triangle supported on the
interval [x0, x0+ε] in a neighborhood of a point x0 ∈ (0, 1) (see Figure 1.3):

∆u(x) =




0 if x 6∈ [x0, x0 + ε],
v1(x− x0) if x ∈ [x0, x0 + αε],
v1αε+ v2(x− x0 − αε) if x ∈ [x0 + αε, x0 + ε],

where the parameters α, v1, v2 are related by

αv1 + (1− α)v2 = 0.

This relation provides the continuity of u0+∆u at the point x0+ε, because
it yields to the equality ∆u(x0 + ε− 0) = 0.

Note that this variation (the Weierstrass variation) is localized and has
an infinitesimal absolute value (if ε→ 0), but its derivative (∆u)′ is finite,
unlike the variation in (1.2.8) (see Figure 1.3):

(∆u)′ =




0 if x 6∈ [x0, x0 + ε],
v1 if x ∈ [x0, x0 + αε],
v2 if x ∈ [x0 + αε, x0 + ε].

Computing δI from (1.2.7) and rounding up to ε, we find that

δI = ε[αF (x0, u0, u
′
0 + v1) + (1− α)F (x0, u0, u

′
0 + v2)

−F (x0, u0, u
′
0)] + o(ε) ≥ 0

if u0 is a minimizer.
The last expression yields to the Weierstrass test and the necessary Wei-

erstrass condition. Any minimizer u(x) of (1.2.1) satisfies the inequality

αF (x0, u0, u
′
0 + v1) + (1− α)F (x0, u0, u

′
0 + v2)− F (x0, u0, u

′
0) ≥ 0.

Comparing this with the definition of convexity (1.2.2), we observe that
the Weierstrass condition requires convexity of the Lagrangian F (x, y, z)
with respect to its third argument z = u′. The first two arguments x, y = u
here are the coordinates x, u(x) of the testing minimizer u(x). Recall that
minimizer u(x) is a solution to the Euler equation.
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FIGURE 1.3. Weierstrass variation.

Vector-Valued Minimizer. The Euler equation and the Weierstrass condi-
tion can be naturally generalized to the problem with the vector-valued
minimizer

I(u) = min
u

∫ 1

0

F (x,u,u′),

where x is a point in the interval [0, 1] and u = [u1(x), . . . , un(x)] is a
vector function. We suppose that F is a twice differentiable function of its
arguments. The classical (twice differentiable) local minimizer u0 of the
problem (1.2.1) is given by a solution to the vector-valued Euler equations,

d

dx

∂F

∂u′0
− ∂F

∂u0
= 0,

which expresses the stationarity requirement of a minimizer to small vari-
ations of the variable u.

The Weierstrass test requires convexity of F (x,y, z) with respect to the
last vector argument. Here again y = u0(x) represents a minimizer.

Remark 1.2.1 Convexity of the Lagrangian does not guarantee the exis-
tence of a solution to a variational problem. It states only that the mini-
mizer (if it exists) is stable against fine-scale perturbations. However, the
minimum may not exist at all, see, for example (Ioffe and Tihomirov, 1979;
Zhikov, 1993).

If the solution of a variational problem fails the Weierstrass test, then its
cost can be decreased by adding infinitesimal wiggles to the solution. The
wiggles are the Weierstrass trial functions, which decrease the cost. In this
case, we call the variational problem ill-posed, and we say that the solution
is unstable against fine-scale perturbations.
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1.3 Relaxation

1.3.1 Nonconvex Variational Problems

Typical problems of structural optimization correspond to a Lagrangian
F (x,y, z) that is nonconvex with respect to z. In this case, the Weierstrass
test fails, and the problem is ill-posed.

Let us consider a problem of this type. Suppose that the Lagrangian
F (x,y, z) is a nonconvex function of its third argument; is bounded from
below (say, by zero),

F (x,y, z) ≥ 0 ∀x,y, z;
and satisfies the condition

lim
|z|→∞

F (x,y, z)
|z| = ∞.

Then the infimum I0

I0 = inf
u
I(u), I(u) =

∫ 1

0

F (x,u,u′)

is nonnegative, I0 ≥ 0.
One can construct a minimizing sequence {us} such that I(us) → I0.

Due to the preceding condition, the minimizing sequence {us} consists of
continuous functions with L1-bounded derivatives; see (Dacorogna, 1989).

Because F (., ., z) is not convex, this minimizing sequence cannot tend
to a differentiable curve in the limit. Otherwise it would satisfy the Euler
equation and the Weierstrass test, but the last requires the convexity of
F (., ., z).

We will demonstrate that a minimizing sequence tends to a “generalized
curve.” It consists of infinitesimal zigzags. The limiting curve has a dense
set of points of discontinuity of the derivative. A detailed explanation of this
phenomenon can be found, for example, in (Young, 1942a; Young, 1942b;
Gamkrelidze, 1962; Young, 1969; Warga, 1972; Gamkrelidze, 1985). Here
we give a brief description of it, mainly by working on several examples.

Example 1.3.1 Consider a simple variational problem that yields to the
generalized solution (Young, 1969):

inf
u

I(u) = inf
u

∫ 1

0

G(u, u′), (1.3.1)

where

G(u, v) = u2 + min{(v − 1)2, (v + 1)2}, u(0) = u(1) = 0. (1.3.2)

The graph of the function G(., v) is presented in Figure 1.2B.



1.3 Relaxation 15

u

xε

FIGURE 1.4. Oscillating minimizing sequence.

The Lagrangian G penalizes the trajectory u for having the speed |u′|
different from ±1 and penalizes the deflection of the trajectory u from
zero. These contradictory requirements cannot be resolved in the class of
classical trajectories.

Indeed, a differentiable minimizer satisfies the Euler equation (1.2.12)
that takes the form

u′′ − u = 0 if u′ 6= 0. (1.3.3)

Next, the Weierstrass test additionally requires convexity of G(u, v) with
respect to v; the LagrangianG(u, v) is nonconvex in the interval v ∈ (−1, 1)
(see Figure 1.2). The Weierstrass test requires that the extremal (1.3.3) is
supplemented by the inequality (recall that v = u′)

u′ 6∈ (−1, 1) at the optimal trajectory. (1.3.4)

and it is not clear how to satisfy it
On the other hand, the minimizing sequence for problem (1.3.1) can

be immediately constructed. Indeed, the infimum of (1.3.1) obviously is
nonnegative, infu I(u) ≥ 0. Therefore, a sequence us with the property

lim
s→∞

I(us) = 0

is a minimizing sequence.
Consider a set of functions ũs(x) that belong to the boundary of the

forbidden interval ũ′(x) = −1 or ũ′(x) = 1 of the nonconvexity of G(., v).
These functions make the second term in the Lagrangian (1.3.2) vanish,
min{(ũ′ − 1)2, (ũ′ + 1)2} = 0, and the problem becomes

I(ũs, (ũs)′) =
∫ 1

0

(ũs)2.

The term ũs oscillates near zero if the derivative (ũs)′ changes its sign on
intervals of equal length. The cost I(ũs) depends on the density of switching
points and tends to zero when the number of these points increases (see
Figure 1.4). Therefore, the minimizing sequence consists of the saw-tooth
functions ũs; the heights of the teeth tend to zero and their number tends
to infinity as s→∞.

Note that the minimizing sequence {ũs} does not converge to any classi-
cal function but rather to a distribution. This minimizer ũs(x) satisfies the
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contradictory requirements, namely, the derivative must keep the absolute
value equal to one, but the function itself must be arbitrarily close to zero:

|(ũs)′| = 1 ∀x ∈ [0, 1], max
x∈[0,1]

ũs → 0 as s→∞.

The limiting curve u0 has zero norm in C0[0, 1] but a finite norm in C1[0, 1].

Remark 1.3.1 If boundary values were different, the solution could cor-
respond partly to the classical extremal (1.3.3), (1.3.4), and partly to the
saw-tooth curve; in the last case u′ belongs on the boundary of the forbidden
interval |u′| = 1.

This considered nonconvex problem is an example of an ill-posed vari-
ational problem. For these problems, the classical variational technique
based on the Euler equation fails to work. Other methods are needed to
deal with such problems. Namely, we replace an ill-posed problem with a
relaxed one.

1.3.2 Convex Envelope

Consider a variational problem with a nonconvex Lagrangian F . We want
to replace this problem with a new one that describes infinitely rapidly
oscillating minimizers in terms of averages. This will be done by the con-
struction of the convex envelope of a nonconvex Lagrangian. Let us give
the definitions (see (Rockafellar, 1997)).

Definition 1.3.1 The convex envelope CF is a solution to the following
minimal problem:

CF (v) = inf
ξ

1
l

∫ l

0

F (v + ξ) ∀ ξ :
∫ l

0

ξ = 0. (1.3.5)

This definition determines the convex envelope as the minimum of all paral-
lel secant hyperplanes that intersect the graph of F ; it is based on Jensen’s
inequality (1.2.4).

To compute the convex envelope CF one can use the Carathéodory theo-
rem (see (Carathéodory, 1967; Rockafellar, 1997)). It states that the argu-
ment ξ(x) = [ξ1(x), . . . , ξn(x)] that minimizes the right-hand side of (1.3.5)
takes no more than n+1 different values. This theorem refers to the obvious
geometrical fact that the convex envelope consists of the supporting hyper-
planes to the graph F (ξ1, . . . , ξn). Each of these hyperplanes is supported
by no more than (n+ 1) arbitrary points.

The Carathéodory theorem allows us to replace the integral in the right-
hand side of the definition of CF by the sum of n+ 1 terms; the definition
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(1.3.5) becomes:

CF (v) = min
mi∈M

min
ξi∈Ξ

(
n+1∑
i=1

miF (v + ξi)

)
, (1.3.6)

where

M =

{
mi : mi ≥ 0,

n+1∑
i=1

mi = 1

}
(1.3.7)

and

Ξ =

{
ξi :

n+1∑
i=1

miξi = 0

}
. (1.3.8)

The convex envelope CF (v) of a function F (v) at a point v coincides
with either the function F (v) or the hyperplane that touches the graph of
the function F . The hyperplane remains below the graph of F except at
the tangent points where they coincide.

The position of the supporting hyperplane generally varies with the point
v. A convex envelope of F can be supported by fewer than n+ 1 points; in
this case several of the parameters mi are zero.

On the other hand, the convex envelope is the greatest convex function
that does not exceed F (v) in any point v (Rockafellar, 1997):

CF (v) = maxφ(v) : φ(v) ≤ F (v) ∀v and φ(v) is convex.

Example 1.3.2 Obviously, the convex envelope of a convex function co-
incides with the function itself, so all mi but m1 are zero in (1.3.6) and
m1 = 1; the parameter ξ1 is zero because of the restriction (1.3.8).

The convex envelope of a “two-well” function,

Φ(v) = min {F1(v), F2(v)} ,

where F1, F2 are convex functions of v, either coincides with one of the
functions F1, F2 or is supported by no more than two points for every v;
supporting points belong to different wells. In this case, formulas (1.3.6)–
(1.3.8) for the convex envelope are reduced to

CΦ(v) = min
m,ξ

{mF1(v − (1−m)ξ) + (1−m)F2(v +mξ)} .

Indeed, the convex envelope touches the graphs of the convex functions
F1 and F2 in no more than one point. Call the coordinates of the touching
points v + ξ1 and v + ξ2, respectively. The restrictions (1.3.8) become
m1ξ1 + m2ξ2 = 0, m1 + m2 = 1. It implies the representations ξ1 =
−(1−m)ξ and ξ2 = mξ.
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Example 1.3.3 Consider the special case of the two-well function,

F (v1, v2) =
{

0 if v2
1 + v2

2 = 0,
1 + v2

1 + v2
2 if v2

1 + v2
2 6= 0. (1.3.9)

The convex envelope of F is equal to

CF (v1, v2) =
{

2
√
v2
1 + v2

2 if v2
1 + v2

2 ≤ 1,
1 + v2

1 + v2
2 if v2

1 + v2
2 > 1.

(1.3.10)

Here the envelope is a cone if it does not coincide with F and a paraboloid
if it coincides with F .

Indeed, the graph of the function F (v1, v2) is axisymmetric in the plane
v1, v2; therefore, the convex envelope is axisymmetric as well: CF (v1, v2) =
f(
√
v2
1 + v2

2). The convex envelope CF (v) is supported by the point v−(1−
m)ξ = 0 and by a point v+mξ = v0 on the paraboloid φ(v) = 1+v2

1 +v2
2 .

We have

v0 =
1

1−m
v

and

CF (v) = min
m

{
(1−m)φ

(
1

1−m
v
)}

.

The calculation of the minimum gives (1.3.10).

Example 1.3.4 Consider the nonconvex function F (v) used in Example
1.3.1:

F (v) = min{(v − 1)2, (v + 1)2}.

It is easy to see that the convex envelope CF is

CF (v) =




(v + 1)2 if v ≤ −1,
0 if v ∈ (−1, 1),
(v − 1)2 if v ≥ 1.

Hessian of Convex Envelope. We mention here a property of the convex
envelope that we will use later. If the convex envelope CF (v) does not co-
incide with F (v) for some v = vn, then CF (vn) is convex, but not strongly
convex. At these points the Hessian H(F ) = ∂2

∂vi∂vj
F (v) is semipositive; it

satisfies the relations

H(CF (v)) ≥ 0, detH(CF (v)) = 0 if CF < F,

which say that H(CF ) is a nonnegative degenerate matrix. These relations
can be used to compute CF (v).
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1.3.3 Minimal Extension and Minimizing Sequences

The construction of the convex envelope is used to reformulate (relax) a
nonconvex variational problem. Consider again the variational problem

I(u) = min
u

∫ 1

0

F (x,u,u′) (1.3.11)

where F is a continuous function that is not convex with respect to its last
argument. Recall that this problem does not satisfy the Weierstrass test on
the intervals of nonconvexity of F .

Definition 1.3.2 We call the forbidden region Zf the set of z for which
F (x,y, z) is not convex with respect to z,

Zf = {z : CzF (x,y, z) < F (x,y, z)} .

The notation CzF (x,y, z) is used to show the argument z of the convexi-
fication: The other two arguments are considered to be parameters when
the convex envelope is calculated. (Later, we omit the subindex ( )z when
this does not lead to misunderstanding.)

Note that the derivative u′ of a minimizer u of (1.3.11) never belongs to
the region Zf:

u′ 6∈ Zf.

This additional constraint on the minimizer is satisfied in the construction
of a minimizer of a nonconvex problem.

To deal with a nonconvex problem, we “relax” it. Relaxation means that
we replace the problem with another one that has the same cost but whose
solution is stable against fine-scale perturbations; particularly, it cannot
be improved by the Weierstrass variation. The relaxed problem has the
following two basic properties:

• The relaxed problem has a classical solution.

• The infimum of the functional (the cost of the problem) in the initial
problem coincides with the cost of the relaxed problem.

Here we will demonstrate two approaches to relaxation. Each of them
yields to the same construction but uses different arguments to achieve it.
In the next chapters we will see similar procedures applied to variational
problems with multiple integrals; sometimes they also yield the same con-
struction, but generally they result in different relaxations.

Minimizing Sequences

The first construction is based on local minimization. Consider the ex-
tremal problem (1.3.11) and the corresponding solution u0(x). Let us fix
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two neighboring points A = (x0, u0(x0)) and B = ((x0 + ε), u0(x0 + ε))
on this solution. Using the smallness of ε, we represent B as

B = ((x0 + ε),u0(x0) + εu′(x0) + o(ε)) .

The impact to the cost of problem (1.2.1) due to this interval is

Iε(u0) =
∫ x0+ε

x0

F (x,u0,u′0) = εF (x0,u0(x0),u′0(x0)) + o(ε).

Let us examine a local variation of the solution u0(x): We replace it with
a zigzag piecewise linear curve that passes through the points A and B.

Consider a continuous curve uε that contains p − 1 subintervals of the
constancy of the derivative v = u′ε. The variable v(x) takes several values
v1 +u′0(x0), . . . ,vp +u′0(x0); each value is kept on the subinterval of length
εmi, where

∑
mi = 1. The derivative u′ε(x) is

u′ε(x) = u′0(x0) + vk if x ∈
[
x0 + ε

k∑
i=1

mi, x0 + ε
k+1∑
i=1

mi.

]
,

where k = 1, . . . , p− 1. The saw-tooth curve uε is

uε(x) = u(x0) +
∫ x

x0

(u′(x0) + v(x))dx. (1.3.12)

We require that any admissible solution uε passes through point B. More
exactly, we require that its value at the point x0 + ε is equal to u0(x0 + ε)
up to the terms of the order of o(ε),

uε(x0 + ε)− u0(x0 + ε) =
p∑

i=1

mivi = o(ε). (1.3.13)

Let us compute the effect of replacing the differentiable curve u0 with the
zigzag curve uε. We estimate the integral of F (x,uε,u′ε) over this interval,
up to terms of order of o(ε). To estimate, we use the smallness of the
interval of variation. Replace uε(x) with u0(x0)

uε(x) = u0(x0) +O(ε)

and compute

F (x,uε(x),vi + u′0(x0)) = F (x0,u0(x0),u′0(x0) + u′ε(x)) +O(ε)

for any x ∈ [x0, x0 + ε]. The Lagrangian (rounded up to O(ε)) is piecewise
constant in the interval [x0, x0 + ε]. The impact Iε(uε) becomes

Iε(uε) = ε

p∑
i=1

miF (x0,uε(x0),u′0(x0) + vi) + o(ε). (1.3.14)
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Calculate the minimum of (1.3.14) with respect to the arguments v1, . . . ,vp

and m1, . . . ,mp, which are subject to the constraints (see (1.3.13))

mi(x) ≥ 0,
p∑

i=1

mi = 1,
p∑

i=1

mivi = 0. (1.3.15)

This minimum coincides with the convex envelope of the original Lagrang-
ian with respect to its last argument (see (1.3.7)):

min
mi,vi∈(1.3.15)

p∑
i=1

miF (x,u,vi) = CFv(x,u0,v). (1.3.16)

By referring to the Carathéodory theorem (1.3.7) we conclude that it is
enough to split the interval into

p = n+ 1 (1.3.17)

parts so that v = u′ takes k + 1 values.
Note that the constraint (1.3.15) leaves the freedom to choose inner pa-

rameters mi and vi to minimize the function
∑p

i=1miF (u,vi) and thus to
minimize the cost of the variational problem (see (1.3.16)).

Compare the costs Iε(u0) and Iε(uε) of (1.3.11) corresponding to the
smooth solution u0 and to the zigzag solution (uε). Using the definition of
the convex envelope we obtain the inequality:

1
ε

(Iε(u0)− Iε(uε)) = F (x0,u0(x0),u′0(x0)

−CF (x0,uε(x0),u′(x0)) +O(ε) ≥ 0.

We see that the zigzag solution uε corresponds to lower cost if F > CzF ,
that is, in the regions of nonconvexity of F .

Passing to the variational problem (1.3.11) in the whole interval [0, 1] we
perform the preceding extension in each interval of length ε. This extension
replaces the Lagrangian F (x, y, z) with the convex envelope CzF (x, y, z) so
that the relaxed problem becomes

I = min
u

∫ 1

0

Cu′F (x,u(x),u′(x)) . (1.3.18)

The curve uε strongly converges to the curve u0:

‖uε − u0‖L∞[0,1] → 0, as ε→ 0,

but its derivative converges to u′0 only weakly in Lp,∫ 1

0

φ (u′ε − u′0) → 0 ∀ φ ∈ Lq(0, 1),
1
p

+
1
q

= 1.

For the definition and discussion of the weak convergence we refer the
reader to books on analysis, such as (Shilov, 1996).
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Remark 1.3.2 The choice of the proper space Lp depends on the Lagrang-
ian F because F (., .,u′) must be integrable.

The cost of the reformulated (relaxed) problem (1.3.18) corresponds to the
cost of the problem (1.3.11) on the minimizing sequence (1.3.12). Therefore,
the cost of the relaxed problem is equal to the cost of the original problem
(1.3.11). The extension of the Lagrangian that preserves the cost of the
problem is called the minimal extension. The minimal extension enlarges
the set of classical minimizers by including generalized curves in it.

Generally speaking, this extension leads to an attainable upper bound
of the cost of an unstable problem because we cannot guarantee that the
extension cannot be further improved. However, the Lagrangian of the re-
laxed problem is convex, which guarantees that its minimizers satisfy the
Weierstrass test and is stable against fine-scale perturbations.

Minimal Extension, Based on the Weierstrass Test

We introduce an alternative method of relaxation that leads to the same
results but does not require consideration of the structure of minimizing
sequences.

Consider the class of Lagrangians NF (x, y, z) that are smaller than
F (x, y, z) and satisfy the Weierstrass test W(NF (x, y, z)) ≥ 0:{

NF (x, y, z)− F (x, y, z) ≤ 0,
W(NF (x, y, z)) ≥ 0 ∀ x, y, z.

Let us take the maximum on NF (x, y, z) and call it SF . Clearly, SF cor-
responds to turning one of these inequalities into an equality:

SF (x, y, z) = F (x, y, z), W(SF (x, y, z)) ≥ 0 if z 6∈ Zf,
SF (x, y, z) ≤ F (x, y, z), W(SF (x, y, z)) = 0 if z ∈ Zf.

This variational inequality describes the extension of the Lagrangian of an
unstable variational problem. Notice that

1. The first equality holds in the region of convexity of F and the ex-
tension coincides with F in that region.

2. In the region where F is not convex, the Weierstrass test of the ex-
tended Lagrangian is satisfied as an equality; this equality serves to
determine the extension.

These conditions imply that SF is convex everywhere. Also, SF is the
maximum over all convex functions that do not exceed F . Again, SF is
equal to the convex envelope of F :

SF (x, y, z) = CzF (x, y, z).

The cost of the problem remains the same because the convex envelope
corresponds to a minimizing sequence of the original problem.
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Remark 1.3.3 Note that the geometrical property of convexity never ex-
plicitly appears here. We simply satisfy the Weierstrass necessary condition
everywhere. Hence, this relaxation procedure can be extended to more com-
plicated multidimensional problems for which the Weierstrass condition and
convexity do not coincide.

Properties of the Relaxed Problem

• Recall that the derivative of the minimizer never takes values in the
region Zf of nonconvexity of F . Therefore, a solution to a nonconvex
problem stays the same if its Lagrangian F (x,y, z) is replaced by any
Lagrangian NF (x,y, z) that satisfies the restrictions

NF (x,y, z) = F (x,y, z) ∀ z 6∈ Zf,
NF (x,y, z) > CF (x,y, z) ∀ z ∈ Zf.

Indeed, the two Lagrangians F (x,y, z) and NF (x,y, z) coincide in
the region of convexity of F . Therefore, the solutions to the varia-
tional problem also coincide in this region. Neither Lagrangian sat-
isfies the Weierstrass test in the forbidden region of nonconvexity.
Therefore, no minimizer can distinguish between these two problems:
It never takes values in Zf. The behavior of the Lagrangian in the
forbidden region is simply of no importance. In this interval, the La-
grangian cannot be computed from the minimizer.

• The infimum of the functional for the initial problem coincides with
the minimum of the functional in the relaxed problem. The relaxed
problem has a convex Lagrangian. The Weierstrass test is satisfied,
and the minimal solution (if it exists) is stable against fine-scale per-
turbations. To be sure that the solution of the relaxed problem exists,
one should also examine other sources of possible nonexistence (see,
for example (Ioffe and Tihomirov, 1979)).

• The number of minimizers in the relaxed problem is increased. Instead
of one n-dimensional vector minimizer u(x) in the original problem,
they now include n+1 vector minimizers vi(x) and n+1 minimizers
mi(x) (see (1.3.17)) connected by two equalities (1.3.15) and the in-
equalities mi(x) ≥ 0. The relaxed problem is controlled by the larger
number of independent parameters that are used to compute the re-
laxed Lagrangian CF (x,u,u′).

In the forbidden region, the Euler equations degenerate. For example, sup-
pose that u is a scalar; the convex envelope has the form

CF = au′ + b(x, u)

if it does not coincide with G. This representation implies that the first
term in the left-hand side (1.2.11) of the Euler equation (1.2.12) vanishes
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Average
derivative

Pointwise deriva-
tives

Optimal concen-
trations

Convex enve-
lope CG(u, v)

v < −1 v0
1 = v0

2 = v m0
1 = 1, m0

2 = 0 u2 + (v − 1)2

|v| < 1 v0
1 = 1, v0

2 = −1 m0
1 = m0

2 = 1
2

u2

v > 1 v0
1 = v0

2 = v m0
1 = 0, m0

2 = 1 u2 + (v + 1)2

TABLE 1.1. Characteristics of an optimal solution in Example 1.3.1.

identically: d
dx

∂
∂u′ CF ≡ 0. The Euler equation degenerates into an algebraic

equation ∂
∂uCF = 0.

In the general case, the order of the system of Euler equations decreases
(for details, see (Gamkrelidze, 1962; Gabasov and Kirillova, 1973; Clements
and Anderson, 1978)).

1.3.4 Examples: Solutions to Nonconvex Problems

Example 1.3.5 We revisit Example 1.3.1. Let us solve this problem by
building the convex envelope of the Lagrangian G(u, v):

CvG(u, v) = min
m1,m2

min
v1,v2

{
u2 +m1(v1 − 1)2 +m2(v2 + 1)2

}
,

v = m1v1 +m2v2, m1 +m2 = 1, mi ≥ 0.

The form of the minimum depends on the value of v = u′. The convex
envelope CG(u, v) coincides with eitherG(u, v) if v 6∈ [0, 1] or CG(u, v) = u2

if v ∈ [0, 1]; see Example 1.3.4. Optimal values v0
1 , v

0
2 , m

0
1 m0

2 of the
minimizers and the convex envelope CG are shown in Table 1.1. The relaxed
form of the problem with zero boundary conditions

min
u

∫ 1

0

CG(u, u′), u(0) = u(1) = 0,

has an obvious solution,

u(x) = u′(x) = 0,

that yields the minimal (zero) value of the functional. It corresponds to the
constant optimal value mopt of m(x): mopt(x) = 1

2 ∀x ∈ [0, 1].
The relaxed Lagrangian is minimized over four functions u,m1, v1, v2

bounded by one equality, u′ = m1v1 + (1 − m1)v2 and the inequalities
0 ≤ m ≤ 1, while the original Lagrangian is minimized over one function
u. In contrast to the initial problem, the relaxed one has a differentiable
solution in terms of these four controls.

A Two-Well Lagrangian

We turn to a more advanced example of the relaxation of an ill-posed
nonconvex variational problem. This example highlights more properties
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a b u’

F(u’ )

u’

x

a

b

FIGURE 1.5. Convexification of the Lagrangian (top) and the minimizer (bot-
tom); points a and b are equal to v1 and v2, respectively.

of relaxation and introduces piecewise quadratic Lagrangians that are the
main tool in the investigation of optimal composites.

Example 1.3.6 Consider the minimization problem

min
u(x)

∫ z

0

Fp(x, u, u′), u(0) = 0, u′(z) = 0 (1.3.19)

with a Lagrangian
Fp = (u− αx2)2 + Fn(u′), (1.3.20)

where
Fn(v) = min{a v2, b v2 + 1}, 0 < a < b, α > 0.

Note that the second term Fn of the Lagrangian Fp is a nonconvex function
of u′.

The first term (u − αx2)2 of the Lagrangian forces the minimizer u and
its derivative u′ to increase with x, until u′ at some point reaches the
interval of nonconvexity of Fn(u′). The derivative u′ must vary outside
of the forbidden interval of nonconvexity of the function Fn at all times..
Formally, this problem is ill-posed because the Lagrangian is not convex
with respect to u′ (Figure 1.5); therefore, it needs relaxation.

To find the convex envelope CF we must transform Fn(u′) (in this ex-
ample, the first term of Fp (see (1.3.20)) is independent of u′ and it does
not change after the convexification). The convex envelope CFp is equal to

CFp = (u− αx2)2 + CFn(u′).
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Let us compute CFn(v) (again we use the notation v = u′). The envelope
CFn(v) coincides with either the graph of the original function or the linear
function l(v) = Av + B that touches the original graph in two points (as
it is predicted by the Carathéodory theorem; in this example n = 1). This
function can be found as the common tangent l(v) to both convex branches
(wells) of Fn(v): {

l(v) = av2
1 + 2av1(v − v1),

l(v) = (bv2
2 + 1) + 2bv2(v − v2),

where v1 and v2 belong to the corresponding branches of Fp:{
l(v1) = av2

1 ,
l(v2) = bv2

2 + 1.

Solving this system for v, v1, v2 we find the coordinates of the supporting
points

v1 =

√
b

a(a− b)
, v2 =

√
a

b(a− b)
,

and we calculate the relaxed Lagrangian:

CFn(v) =




av2 if |v| < v1,

2v
√

ab
a−b −

b
a−b if v ∈ [v1, v2],

1 + bv2 if |v| < v2

that linearly depends on v = u′ in the region of nonconvexity of F .
The relaxed problem has the form

min
u

∫
CFp(x, u, u′),

where

CFp(x, u, u′) =




(u − αx2)2 + a(u′)2 if |u′| ≤ v1,

(u − αx2)2 + 2u′
√

ab
a−b −

b
a−b if v1 ≤ |u′| ≤ v2,

(u − αx2)2 + b(u′)2 + 1 if |u′| ≥ v2.

Note that the variables u, v in the relaxed problem are the averages of
the original variables; they coincide with those variables everywhere when
CF = F . The Euler equation of the relaxed problem is


au′′ − (u− αx2) = 0 if |u′| ≤ v1,
(u− αx2) = 0 if v1 ≤ |u′| ≤ v2,
bu′′ − (u− αx2) = 0 if |u′| ≥ v2.

The Euler equation is integrated with the boundary conditions shown in
(1.3.19). Notice that the Euler equation degenerates into an algebraic equa-
tion in the interval of convexification. The solution u and the variable

∂
∂u′ CF of the relaxed problem are both continuous everywhere.
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Integrating the Euler equations, we sequentially meet the three regimes
when both the minimizer and its derivative monotonically increase with x
(see Figure 1.5). If the length z of the interval of integration is chosen suf-
ficiently large, one can be sure that the optimal solution contains all three
regimes; otherwise, the solution may degenerate into a two-zone solution if
u′(x) ≤ v2 ∀x or into a one-zone solution if u′(x) ≤ v1 ∀x (in the last case
the relaxation is not needed; the solution is a classical one).

Let us describe minimizing sequences that form the solution to the re-
laxed problem. Recall that the actual optimal solution is a generalized
curve in the region of nonconvexity; this curve consists of infinitely often
alternating parts with the derivatives v1 and v2 and the relative fractions
m(x) and (1−m(x)):

v = 〈u′(x)〉 = m(x)v1 + (1 −m(x))v2, u′ ∈ [v1, v2], (1.3.21)

where 〈 〉 denotes the average, u is the solution to the original problem,
and 〈u〉 is the solution to the homogenized (relaxed) problem.

The Euler equation degenerates in the second region into an algebraic
one 〈u〉 = αx2 because of the linear dependence of the Lagrangian on 〈u〉′
in this region. The first term of the Euler equation,

d

dx

∂F

∂ 〈u〉′
≡ 0 if v1 ≤ | 〈u〉′ | ≤ v2,

vanishes at the optimal solution.
The variable m of the generalized curve is nonzero in the second regime.

This variable can be found by differentiation of the optimal solution:

(〈u〉 − αx2)′ = 0 =⇒ 〈u〉′ = 2αx.

This equality, together with (1.3.21), implies that

m =




0 if |u′| ≤ v1,
2α

v1−v2
x− v2

v1−v2
if v1 ≤ |u′| ≤ v2,

1 if |u′| ≥ v2.
(1.3.22)

Variablem linearly increases within the second region (see Figure 1.5). Note
that the derivative u′ of the minimizing generalized curve at each point x
lies on the boundaries v1 or v2 of the forbidden interval of nonconvexity of
F ; the average derivative varies only due to varying of the fraction m(x)
(see Figure 1.5).

1.3.5 Null-Lagrangians and Convexity

The convexity requirements of the Lagrangian F that follow from the Wei-
erstrass test are in agreement with the concept of null-Lagrangians (see,
for example (Strang, 1986)).



28 1. Relaxation of One-Dimensional Variational Problems

Definition 1.3.3 The Lagrangians φ(x,u,u′) for which the Euler equa-
tion (1.2.12), (1.2.11) identically vanishes are called Null-Lagrangians.

It is easy to check that null-Lagrangians in one-dimensional variational
problems are linear functions of u′. Indeed, the Euler equation is a second-
order differential equation with respect to u:

d

dx

(
∂

∂u′
φ

)
− ∂

∂u
φ =

∂2φ

∂(u′)2
· u′′ + ∂2φ

∂u′∂u
· u′ + ∂2φ

∂u∂x
− ∂φ

∂u
≡ 0.

The coefficient of u′′ is equal to ∂2φ
∂(u′)2 . If the Euler equation holds iden-

tically, this coefficient is zero, and therefore ∂G
∂u′ does not depend on u′.

Hence, φ linearly depends on u′:

φ(x,u,u′) = u′ · A(u, x) +B(u, x);
A = ∂2φ

∂u′∂u , B = ∂2φ
∂u∂x −

∂φ
∂u .

In addition, if the equality
∂A

∂x
=
∂B

∂u
holds, then the Euler equation vanishes identically. In this case, φ is a
null-Lagrangian.

Example 1.3.7 Function φ = u u′ is the null-Lagrangian. We have

d

dx

(
∂

∂u′
φ

)
− ∂

∂u
φ = u′ − u′ ≡ 0.

Consider a variational problem with the Lagrangian F ,

min
u

∫ 1

0

F (x,u,u′).

Adding a null-Lagrangian to the given Lagrangian does not affect the Euler
equation of the problem. The family of problems

min
u

∫ 1

0

(F (x,u,u′) + tφ(x,u,u′)) ,

where t is an arbitrary number, corresponds to the same Euler equation.
Therefore, each solution to the Euler equation corresponds to a family of
Lagrangians F (x,u, z) + tφ(x,u, z), where t is an arbitrary real number.
This says, in particular, that a Lagrangian cannot be uniquely defined by
the solution to the Euler equation.

The stability of the minimizer against the Weierstrass variations should
be a property of the Lagrangian that is independent of t. It should be a
common property of the family of equivalent Lagrangians. On the other
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hand, if F (x,u, z) is convex with respect to z, then F (x,u, z) + tφ(x,u, z)
is also convex. Indeed, φ(x,u, z) is linear as a function of z, and adding the
term tφ(x,u, z) does not affect the convexity of the sum. In other words,
convexity is a characteristic property of the family. Accordingly, it serves
as a test for the stability of an optimal solution.

1.3.6 Duality

Legendre Transform

A useful tool in variational problems is duality. Particularly, duality allows
us to effectively compute the convex envelope of a Lagrangian. For detailed
exposition, we refer to (Gelfand and Fomin, 1963; Rockafellar, 1967; Rocka-
fellar, 1997; Ekeland and Temam, 1976; Fenchel, 1949; Ioffe and Tihomirov,
1979).

The classical version of the duality relations is based on the Legendre
transform of the Lagrangian. Consider the Lagrangian L(x, u, u′) that is
convex with respect to u′. Consider an extremal problem

max
u′

{p u′ − L(x, u, u′} (1.3.23)

that has a solution satisfying the following equation:

p =
∂L

∂u′
. (1.3.24)

The variable p is called the dual or conjugate to the “prime” variable u;
p is also called the impulse. Equation (1.3.24) is solvable for u′, because
L(., ., u′) is convex. We have

u′ = φ(p, u, x).

These relations allow us to construct the Hamiltonian H of the system.

Definition 1.3.4 The Hamiltonian is the following function of u, p, and
x:

H(x, u, p) = p φ(p, u, x)− L(x, u, φ(p, u, x)).

The Euler equations and the dual relations yield to exceptionally symmetric
representations, called canonical equations,

u′ = −∂H
∂p

, p′ =
∂H

∂u
.

Generally, u and p are n-dimensional vectors. The canonical relations are
given by 2n first-order differential equations for two n-dimensional vectors
u and p.
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The dual form of the Lagrangian can be obtained from the Hamiltonian
when the variable u is expressed as a function of p and p′ and excluded
from the Hamiltonian. The dual equations for the extremal can be obtained
from the canonical system if it is reduced to a system of n second-order
differential equations for p.

Example 1.3.8 Find a conjugate to the Lagrangian

F (u, u′) =
1
2
σ(u′)2 +

γ

2
u2.

The impulse p is

p =
∂F

∂u′
= σu′.

Derivative u′ is expressed through p as

u′ =
p

σ
.

The Hamiltonian H is

H =
1
2
p2

σ
− γu2.

The canonical system is

u′ =
p

σ
, p′ = γu,

and the dual form F ∗ of the Lagrangian is obtained from the Hamiltonian
using canonical equations to exclude u, as follows:

F ∗(p, p′) =
1
2

(
p2

σ
− 1
γ

(p′)2
)
.

The Legendre transform is an involution: The variable dual to the vari-
able p is equal to u.

Conjugate

The natural generalization of the ideas of the Legendre transform to non-
convex and nondifferentiable Lagrangians yields to conjugate variables.
They are obtained by the Young–Fenchel transform (Fenchel, 1949; Rocka-
fellar, 1966; Ekeland and Temam, 1976).

Definition 1.3.5 Let us define L∗(z∗)–the conjugate to the L(z)–by the
relation

L∗(z∗) = max
z
{z∗ z− L(z)} , (1.3.25)

which implies that z∗ is an analogue of p (compare with (1.3.23)).
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Let us compute the conjugate to the Lagrangian L(x,y, z) with respect
to z, treating x,y as parameters. If L is a convex and differentiable function
of z, then (1.3.25) is satisfied if

z∗ =
∂L(z)
∂z

,

which is similar to (1.3.24). This similarity suggests that the Legendre
transform p and the Young–Fenchel transform z∗ coincide if the Legendre
transform is applicable.3

However, the Young–Fenchel transform is defined and finite for a larger
class of functions, namely, for any Lagrangian that grows not slower than
an affine function:

L(z) ≥ c1 + c2‖z‖ ∀z,

where c1 and c2 > 0 are constants.

Example 1.3.9 Find a conjugate to the function

F (x) = |x|.

From (1.3.25) we have

F ∗(x∗) =
{

0 if |x∗| < 1,
∞ if |x∗| > 1.

The Use of the Young–Fenchel Transform. We can compute the conjugate
to F ∗(z∗), called the second conjugate F ∗∗ to F ,

F ∗∗(z) = max
z∗

{z∗ · z− F ∗(z∗)} .

We denote the argument of F ∗∗ by z.
If F (z) is convex, then the transform is an involution. If F (z) is not

convex, the second conjugate is the convex envelope of F (see (Rockafellar,
1997)):

F ∗∗ = CF.

We relax a variational problem with a nonconvex Lagrangian L(x,u,u′)
by replacing it with its second conjugate:

CvL(x,u,v) = L∗∗(x,u,v) = max
v∗

{v∗ · v − L∗(x,u,v∗)} .

Note that x,u are treated as constant parameters during this calculation.

3Later, we will also use the notation zdual for the adjoint variable denoted here as
z∗.
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1.4 Conclusion and Problems

We have observed the following:

• A one-dimensional variational problem has the fine-scale oscillatory
minimizer if its Lagrangian F (x, u, u′) is a nonconvex function of its
third argument.

• Homogenization leads to the relaxed form of the problem that has a
classical solution and preserves the cost of the original problem.

• The relaxed problem is obtained by replacing the Lagrangian of the
initial problem by its convex envelope. It can be computed as the
second conjugate to F .

• The dependence of the Lagrangian on its third argument in the region
of nonconvexity does not effect the relaxed problem.

To relax a one-dimensional variational problem we have used two ideas.
First, we replaced the function with its convex envelope and got a stable
extension of the problem. Second, we proved that the value of the integral
of the convex envelope CF (v) of a given function is equal to the value of
the integral of this function F (v) if its argument v is a zigzag curve. We
use the Carathéodory theorem, which tells that the number of subregions
of constancy of the argument is less than or equal to n+ 1, where n is the
dimension of the argument of the Lagrangian.

In principle, this construction is also valid for multidimensional varia-
tional problems unless the argument of the integral satisfies additional dif-
ferential restrictions. However, these restrictions necessarily occur in multi-
dimensional problems that deal with the minimization of Lagrangians that
depend on gradients of some potentials or vectors of currents. The gradient
of a function is not a free vector if the dimension of the space is greater
than one; the field e = ∇w is curlfree: ∇× e = 0. Likewise, the current j
is divergencefree: ∇ · j = 0. These differential restrictions express integra-
bility conditions (the equality of mixed second derivatives) for potentials;
they are typical for multidimensional variational problems and they do not
have a one-dimensional analogue. Generally, the multidimensional problem
cannot be relaxed by convexification of its Lagrangian. In this case, con-
vexity of the Lagrangian F (x, w,∇w) with respect to the last argument
is replaced by the more delicate property of quasiconvexity, which will be
discussed in Chapter 6. Relaxation of multidimensional problems requires
replacing the Lagrangian by its quasiconvex envelope.

Problems

1. Formulate the Weierstrass test for the extremal problem

min
u

∫ 1

0

F (x, u, u′, u′′)
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that depends on the second derivative u′′.

2. Find the relaxed formulation of the problem

min
u1,u2

∫ 1

0

(
u2

1 + u2
2 + F (u′1, u

′
2)
)
,

u1(0) = u2(0) = 0, u1(1) = a, u2(1) = b,

where F (v1, v2) is defined by (1.3.9). Formulate the Euler equations
for the relaxed problems and find minimizing sequences.

3. Find the relaxed formulation of the problem

min
u

∫ 1

0

(
u2 + min {|u′ − 1|, |u′ + 1|+ 0.5}

)
,

u(0) = 0, u(1) = a.

Formulate the Euler equation for the relaxed problems and find min-
imizing sequences.

4. Find the conjugate and second conjugate to the function

F (x) = min
{
x2, 1 + ax2

}
, 0 < a < 1.

Show that the second conjugate coincides with the convex envelope
CF of F .

5. Let x(t) > 0, y(t) be two scalar variables and f(x, y) = x y2. Demon-
strate that

f(〈x〉, 〈y〉) ≥ 〈y〉2〈 1
x
〉−1.

When is the equality sign achieved in this relation?

Hint: Examine the convexity of a function of two scalar arguments,

g(y, z) =
y2

z
, z > 0.
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