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Preface

Optimal Design, Structures, and Composites

This book discusses problems of structural optimization. The problem is to
lay out several materials throughout a given domain to maximize or mini-
mize an integral functional associated with the conductive or elastic state
of an assembled medium. We assumed that several materials are available,
and one is asked to arrange them on the volume of the body of a given
shape. It turns out that the materials in the optimal body are mixed on
an infinitely fine scale: The finer the scale, the better the construction.
From an engineering point of view, optimization problems require the use
of composites of given materials rather than materials singly.

As a rule, an optimal design is made of composites. Physically speaking,
we use composites in designs because we prefer materials with properties
that are not immediately available but can be obtained by mixing available
materials; such a mixture can be more suitable than any of the individual
ingredients. For example, composites assembled of isotropic materials can
be anisotropic. Moreover, they can possess such exotic features as a negative
thermal expansion coefficient, or a negative Poisson ratio. These and similar
unusual features could be useful for solving optimization problems.

Optimal composites correspond to rapidly oscillating state variables,
such as stresses and strains in elasticity or currents and fields in conduc-
tivity. The oscillation of optimal solutions is well understood in the theory
of one-dimensional control problems. In some problems, the solution has to
zigzag to satisfy the optimality requirement. The functional decreases as the
zigzags become more finely scaled. It is not surprising that such generalized
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FIGURE P.1. The scheme of a composite structure that transforms the homo-
geneous boundary potential into an inhomogeneous boundary current. The hor-
izontal sides are insulated, and the potential on each vertical side is constant.
The current lines are shown. The inhomogeneity of the current is caused by the
inhomogeneity of the material layout. The good conductor A attracts the current,
the bad conductor C pushes the current away, and the anisotropic composite B
turns the current in a desired direction.

controls also appear in the multidimensional problems of optimal layout of
materials; here they correspond to microstructures of composites. Investi-
gation of multidimensional optimization problems requires determination
of the geometry of optimal composite structures. The one-dimensional ana-
logue of the problem of the best microstructure is relatively simple because
the only way to form a mixture in one dimension is to alternate materials
along the line.

Example P.1 Let us consider the problem of an optimal inhomogeneous
conducting structure that transforms the given boundary potentials to the
desired boundary currents, as shown in Figure P.1P. Suppose that one has a
set of materials of different isotropic conductivity and the layout of materi-
als in the designed domain must be optimized. Clearly, one can control the
boundary currents by varying the materials’ layout, because the variation
in conductivity forces the current out of regions of low conductivity and
attracts it into regions of high conductivity. Careful consideration shows an
additional mechanism of control through the use of anisotropic materials.
The current is controlled and sent in the desired direction by refraction in an
anisotropic composite. The last mechanism is specific to multidimensional
problems and has no one-dimensional analogues. It shows the usefulness of
the anisotropic composite media assembled of initially isotropic materials.

The use of anisotropy to control a process in a medium is well known.
Observe a skier on a slope. The skier can control the direction of his mo-
tion because the resistance to sliding along the ski is much less than the
resistance to sliding in the orthogonal direction. This mechanism allows the
skier to traverse across the slope and make turns. Anisotropy is also used
to steer a sailboat in a direction different from the direction of the wind.
When a current of passive particles moves in a medium due to an applied
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FIGURE P.2. The scheme of an elastic structure with cavities showing the max-
imum stiffness under a given loading. The intensity of the loading is anisotropic,
and so is the corresponding optimal structure. Greater intensity of the loading
corresponds to the direction of greater stiffness.

force field, the anisotropy of the medium plays a similar control role: It
generates a current in a direction different from the direction of the force.

In the optimization of elastic designs, we also find intuitive reasons for
using an anisotropic composite rather than isotropic materials.

Example P.2 Let us consider an elastic material that shows maximal stiff-
ness under some anisotropic external loading; see Figure P.2P. One would
assume that the larger the stress, the more stiffness is needed to resist.
Therefore, we anticipate that the structure tends to be stiffer in the di-
rection of a larger stress, even at the expense of being weakened in the
direction of a smaller stress. Hence, we expect that anisotropic composites
with controllable degrees of anisotropy are more suitable than isotropic
materials for maximization of the stiffness.

Generally, structural optimization determines the structure, that is best
adapted to the object of the design and the loading conditions. The adapta-
tion implies uniform exploitation of the material. For example, the stiffness
optimization is achieved by a structure that evenly stresses the material in-
side the structure. To keep the stress level constant, the fine-scale geomet-
rical parameters of an optimal structure vary from one point to another.
Sometimes, one needs to organize the layout in several length scales to op-
timize a structure, as seen in the structure of bones, leaves, airplane wings,
or domes.

Structural Optimization in Engineering and Mathematics

In practice, the process of design always includes a mysterious element: The
designer chooses the shape and materials for the construction using intu-
ition and experience. Since ancient times this technique has proved effective,
and for centuries engineering landmarks such as aqueducts, cathedrals, and
ships were all built without mathematical or mechanical theories.



xviii Preface

However, from the time of Galileo and Hooke, engineers and mathemati-
cians have developed theories to determine stresses, deflections, currents
and temperature inside structures. This information helps in the selection
of a rational choice of structural elements. Certain principles of optimal-
ity are rooted in common sense. For example, one wants to equalize the
stresses in a designed elastic construction by a proper choice of the layout
of materials. The overstressed parts need more reinforcement, and the un-
derstressed parts can be lightened. These simple principles form a basis for
rational construction of amazingly complicated mechanical structures, like
bridges, skyscrapers, and cars. Still, knowledge of the stresses in a body
is mostly used as a checking tool, parallel with the design proper, which
remains the responsibility of the design engineer.

In the past few decades, it has become possible to turn the design process
into algorithms thanks to advances in computer technology. Large contem-
porary projects require the use of computer-aided design systems. These
systems often incorporate algorithms that gradually improve the initial de-
sign by a suitable variation of design variables, namely, the materials’ cost
and layout. Optimization techniques are used to effect changes in a design
to make it stronger, lighter, or more reliable.

This progress has stimulated an interest in the mathematical foundations
of structural optimization. These foundations are the main topic of this
book. The theory of extremal problems is used to address problems of
design. A design problem asks for the best geometry of layouts of different
materials in a given domain. Of course, this approach simplifies (or, as a
mathematician would say, idealizes) the real engineering problem, because
questions such as convenience or cost of manufacturing are not considered.
Analysis of optimal structures allows us to formulate general principles
of an optimally designed construction. In particular, we can extend the
intuitive principle of equally stressed construction to a multidimensional
situation and find optimal structures that are, in a sense, hybrids of simple
mechanisms.

The Purpose of the Book

A gap exists between mathematical approaches to variational problems and
the practical use of results in structural optimization, theory of compos-
ites, and other engineering applications. On the one hand, we shall see
how mathematicians develop advanced theories such as quasiconvexity and
G-convergence for this purpose. On the other hand, the engineering and nu-
merical community develops software for numerical optimization of com-
plicated structures and successfully optimizes constructions of airplanes,
bridges, and so on.

Progress in the area of numerical approaches is often ahead of mathemat-
ical methods required for an adequate formulation and rigorous solution to
corresponding optimization problems. Mathematics deals with its own ob-
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jectives: Standards of rigor are higher and models are simpler. This tends to
make mathematical papers not too exciting for engineers. As usual, math-
ematicians use advanced methods to solve simple equations, and engineers
use simple methods but work with complicated models. As a result, many
practically oriented researchers are skeptical about the usefulness of re-
fined mathematical theories. An opposite tendency, to interpret abstract
mathematical results as prophecy, is no less risky.

These two approaches should be used in concert, each highlighting sup-
plementary ideas of optimal design. I hope to present the foundations of
structural optimization in a sufficiently simple form to make them avail-
able for practical use and to allow their critical appraisal for improving and
adapting these results to specific models. I also hope that the reader will
enjoy the beauty and elegance of the presented mathematical methods.

Often, mathematical analysis of an optimization problem leads to “un-
usual” solutions that are characterized by fractal geometries and are hardly
suitable for manufacturing. This is acceptable in the framework of the cho-
sen approach: We are looking for a mathematically correct solution, and
we accept its features. From a practical point of view, the emergence of
“strange” solutions reveals certain hidden features of optimality. These so-
lutions should not be rejected as mathematical extravagance, but rather
should be understood and interpreted in depth; often, they point to better
solutions that may be approximated with available resources.

The Contents of the Book

Let us outline the contents of the five parts of the book.

Preliminaries. The exposition starts with an introductory Chapter 1 that
discusses instabilities in one-dimensional variational problems. Specifically,
we study variational problems with rapidly oscillating solutions and ways
to describe these solutions. We also introduce the concept of relaxation of a
nonstable variational problem by replacing the Lagrangian with its convex
envelope.

Chapter 2 introduces the subject of optimization. We discuss conduc-
tivity of inhomogeneous materials and composites. The properties of a
composite significantly depend on its microstructure. We introduce ho-
mogenization methods to describe the effective behavior of structures and
calculate effective properties of special structures. Homogenization theory,
in turn, puts forward the so-calledG-closure problem (Chapter 3) that asks
for bounds of effective properties of composites assembled from given ma-
terials. Bounds of G-closures correspond to composites of extreme effective
properties that arise in optimal design.

Optimization of Conducting Composites. A large class of optimization prob-
lems of conducting composites requires only the simplest laminate struc-
tures for solution. These problems are used in the book as the testing
ground for methods of structural optimization. We introduce all the con-
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trol methods, including sufficient and necessary conditions of optimality
and minimizing sequences. Chapter 4 deals with the optimization of the
total conductivity of a domain. This problem does not have a classical
solution; the optimal layout is a fine-scale mixture or a composite. We re-
formulate (relax) the problem, replacing the layout of available materials
with the layout of optimal composites made of them. We also investigate
the fields in optimal structures. Chapter 5 treats the problems of mini-
mization of a large class of functionals associated with the solution to the
conductivity problem, such as the minimization of the mean temperature
in a part of the domain or the maximization of the boundary current.

Quasiconvexity and Relaxation. The second part deals with the relaxation
technique of multidimensional variational problems with nonconvex inte-
grands. This part contains most of the new mathematical results. In Chap-
ter 6, we briefly discuss instabilities, the Weierstrass test, and we introduce
the main tool for relaxation–the quasiconvex envelope.

In Chapter 7 we obtain upper bounds of the quasiconvex envelope by
constructing some special minimizing sequences. The optimal layouts are
represented by alternatng materials in laminate microstructures. We in-
troduce special layouts with hierarchical geometries called “laminates of a
high rank” and we derive their properties.

In Chapter 8 we derive lower bounds for the relaxed functional that cor-
respond to sufficient conditions of optimality. The lower bound is built by
a so-called translation method. We develop this method using the theories
of quasiconvexity and compensated compactness.

In Chapter 9 we develop a technique of minimal extensions based on
necessary conditions of the Weierstrass type. The extension we obtain gives
an upper bound for the functional but avoids the explicit consideration of
minimizing sequences.

All of these three approaches are illustrated by the solution of an opti-
mization problem of a conducting structure that minimizes a sum of ener-
gies caused by several external sources.

G-Closures. To find the optimal structure of a composite, one first de-
scribes the set of effective properties of all possible microstructures. This
set is called the G-closure of the properties of initially given materials. The
fourth part discusses the knotty problems of G-closures. Chapter 10 deals
with techniques used to describe the boundaries of the closures, i.e., the
extreme effective properties of composites. The techniques are based on the
variational methods introduced in Part III.

In Chapter 11 several examples of G-closures are constructed. These in-
clude the G-closures of conducting materials, the exact coupled bounds for
conducting properties of composites, and bounds for properties of poly-
crystals.

Chapter 12 discusses multimaterial composites. The methods for these
problems are less developed and more diverse. In particular, the technique
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of necessary conditions allows us to address the problem of bounds for a
three-material composite.

Chapter 13 deals with the problem of complex conductivity. We sug-
gest a variational principle for this problem, and we apply the variational
technique to find coupled bounds on the real and imaginary parts of con-
ductivity tensor.

Optimization of Elastic Structures. The last part of the book deals with
optimal design of elastic structures. We begin with a discussion of the
equations and variational principles for elasticity of inhomogeneous media
and the algebra of fourth-rank tensors of elastic moduli (Chapter 14). In
this chapter we also derive effective properties of elastic composites.

In Chapter 15 we consider the problem of minimization of the compliance
of an elastic body, exploiting its similarity to the problems discussed in
earlier chapters; we obtain elastic structures of extreme stiffness. We also
discuss optimization of the shapes of cavities.

In Chapter 16 we survey the results regarding bounds for elastic moduli.
Specifically, we consider an isotropic composite of two isotropic materials
(plane problem), and we describe the bounds on its shear and bulk mod-
uli. These bounds are coupled. We also consider the problem of isotropic
polycrystals with extreme properties and describe the fractal geometry of
optimal polycrystals. These examples demonstrate advanced applications
of the variational technique described in Part III.

Chapter 17 discusses new formulations of a number of problems of struc-
tural optimization. We consider the minimization of the sum of elastic
energies of different processes, the optimization of a periodic composite,
the optimization of a nonenergetic functional, and the optimization in an
unknown class of loadings. This last problem is formulated as a min-max
game between the applied loadings and the responding structure.

Mathematical Methods

Mathematically, the book considers one type of problems in different set-
tings. We describe optimal solutions to unstable variational problems. The
goal is to define a solution that is reasonably smooth; particularly, it should
not depend on the mesh in a discretization scheme. However, it often turns
out that the optimal solution is characterized instead by infinitely fine oscil-
lations. Special tests are developed to distinguish variational problems with
smooth and nonsmooth solutions, and suitable frameworks for describing
the solution with fine oscillations are worked out.

Both aspects deal with a special property of Lagrangians of the varia-
tional problem called quasiconvexity. Variational problems with quasicon-
vex Lagrangians possess stable solutions and problems with nonquasiconvex
Lagrangians may not. Therefore, the test for oscillatory solutions requires
consideration of the quasiconvexity of the Lagrangian. For one-dimensional
variational problems and for some multidimensional problems, quasiconvex-
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ity degenerates to convexity, which makes the determination easy. Gener-
ally, however, the property of quasiconvexity is not geometric, and we need
more refined tools to determine that a Lagrangian is quasiconvex.

If the Lagrangian lacks quasiconvexity, the minimizers generally are re-
placed with oscillating minimizing sequences. We perform the relaxation of
the problem, also called the minimal extension, by averaging the solution
over an infinitesimal volume. This corresponds to replacing the original
nonquasiconvex Lagrangian with its quasiconvex envelope. In this way we
obtain a new variational problem that possesses the same cost as the orig-
inal one, but its solution is smooth and equal to the mean value of the fast
oscillatory solution.

If quasiconvexity degenerates to convexity, the convex envelope can be
built by systematic geometrical methods. There is no systematic universal
method for constructing quasiconvex envelopes, so we instead build two
extensions of the original Lagrangian, one above and one below the quasi-
convex envelope (Chapters 7–9). Sometimes, these extensions coincide, in
which case the quasiconvex envelope is determined.

The technique of bounds is addressed three times: first, in the context
of one-dimensional variational problems (Chapter 1), then for the simplest
multidimensional problems with a scalar potential (Chapter 3), and then in
the general case (Chapters 6–9) of multidimensional problems with several
state variables. This technique is used many times to solve various problems
of G-closure (Part IV) and optimal elastic structures (Part V).

Related Topics

The theory of structural optimization lies at a busy intersection of several
mathematical disciplines—optimal control, calculus of variations, homoge-
nization, convex analysis—and is strongly influenced by materials science.
Its applications include traditional optimal design, theory of composites,
phase transition in solids, “smart” materials, nondestructive testing, self-
organization in physics, biomaterials, and so on. Each of these fields has
its own philosophy, its history, and a huge literature. Here we mention sev-
eral of the related fields in mathematics and engineering. Each field could
probably be identified by a representative, but not complete, list of the
contributors. Specific references are placed in the body of the text.

The variational problems and problems of optimal control require meth-
ods of selecting and describing solutions with infinitely fast oscillations. It
is known in control theory that minimization is generally achieved by an
infinitely rapid oscillating control function, called the chattering control.
This theory was originated by Pontryagin and Young and developed by
Gamkrelidze, Krotov, Rozonoer, Varga, and others. The variational meth-
ods for nonconvex problems were introduced in works by Carathéodory,
Morrey, and Young and developed in the works by Dacorogna, Ekeland,
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Kohn, Lions, Lurie, Müller, Murat, Raitum, Rockafellar, Strang, Tartar,
Temam, and many others.

An average description of the layout for the highly oscillatory materi-
als is the subject of the theory of homogenization. It was originated in
the works by Babuška, Bakhvalov, Bensoussan, Hashin, Keller, Khruslov,
Lions, Olejnik, Papanicolaou, Sanchez-Palencia, and Shtrikman, and de-
veloped in many respects in the works by Benveniste, Bergman, Bruno,
Golden, Kohn, Kozlov, Markov, Milton, Norris, Panasenko, Telega, Tor-
quato, Vigdergauz, Vogelius, Zhikov, and others. The advanced theories of
solution to differential equations with rapidly oscillating coefficients can
be found in the papers by Berlyand, Buttazzo, Cioranescu, Dal Maso, de
Georgi, Fonseca, Francfort, Kinderlehrer, Kohn, Müller, Pedregal, Sukey,
and Tartar, among others.

Approaches for bounds on the effective properties of composites are es-
pecially useful for our goals. This area, initiated around the beginning of
the twentieth century by Rayleigh, Reuss, Voigt, and Wiener, was devel-
oped by Bruggeman, Hill, Hashin, Shtrikman, and Walpole and recently
updated by Avellaneda, Benveniste, Beran, Francfort, Gibiansky, Kohn,
Lurie, Markov, Milton, Murat, Nesi, Ponte Castañeda, Schulgasser, Tal-
bot, Tartar, Torquato, Willis, and Zhikov, among others.

The physical side of the picture was highlighted by the mechanicians
and applied mathematicians who formulated and solved structural opti-
mization problems for several decades, starting from the works by Prager.
We mention here the works of Armand, Arora, Banichuk, Bendsøe, Diaz,
Eshenauer, Fuchs, Haber, Haftka, Kikuchi, Kirsch, Litvinov, Lipton, Mota
Soares, Mroz, Olhoff, Pedersen, Rasmussen, Rozvany, Sigmund, Taylor,
Tortorelli, and Zowe.

Computational techniques of structural optimization deserve special con-
siderations, yet we feel that it does not fit the scope of this book, which
is devoted exclusively to mathematical foundations of structural optimiza-
tion. A detailed discussion of the computational techniques can be found,
for example, in the books by Bendsøe, Haftka and Gürdal, Rozvany, and
Papalambros and Wilde.

Natural Phenomena. Natural phase transitions, shape memory alloys, and
naturally optimal biomaterials form a novel area of application of the dis-
cussed mathematical techniques. These problems, involving complicated
materials, are in many respects similar to structural optimization. In both
cases one deals with several materials or solid phases that are distributed
in a domain in a specific way. The optimality requirement posed by a de-
signer is parallel to a natural variational principle of minimization of the
total energy of the system (the Gibbs principle). The transformation from
one phase to another is parallel to the use of different materials in a design.
In minimizing its energy, a natural system exhibits phase separation and
forms a sort of natural composite that possesses optimal microstructure.
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These similarities suggest that corresponding approaches could be ap-
plied to describe natural mixtures with minimal energy. This concept was
put forward in the works of Ericksen, Khachaturyan, and Kinderlehrer and
developed in the works of Ball, Bhattarcharya, Kohn, Fonseca, Grinfield,
James, Luskin, Roitburd, Rosakis, Truskinovsky, and others. The methods
of quasiconvexity are successively implemented for an explanation of struc-
tures arriving at some natural phase transitions; we refer to the works of
the above-mentioned authors.

However, natural phenomena are much deeper than the problems of
structural optimization. Indeed, the best engineering system should reach
the global minimum of the minimizing functional that represents the qual-
ity of the system. On the contrary, an equilibrium state of a natural system
corresponds to any local minimum of the energy. The energy of complicated
natural systems is typically characterized by a large class of metastable lo-
cal minima.

There are other differences, too. Contrary to an optimal engineering con-
struction, a realizable equilibrium state of a natural system corresponds to
a dynamical process that has led to it. Finally, natural composites usually
are a random mixture of the states that correspond to local minima. The
search for a distribution of local minima requires different techniques from
those discussed here; we do not touch on this subject in the book.

Biomaterials. The amazing rationality of biological “constructions” also
calls for the use of mathematical methods of structural optimization to
model them. Consider, for example, the problem of the structure of a bone.
A bone is a mechanical structure made of composites with variable param-
eters that adapts itself to its working conditions. It performs the clear me-
chanical task of supporting the organism. These features are similar to such
man-made composite structures as masts, bridges, and towers. Therefore, it
would be natural to apply optimization methods developed for engineering
constructions to bone structures.

However, the two problems are not the same. In addition to the problems
of local minima, stable evolutionary dynamics, and randomness already
mentioned, it is not clear what quantity is minimized in natural evolu-
tionary biomaterials (we mean the explicit optimality criterion of a natural
structure, not a general reference to the evolution that perfects organisms).
In engineering problems, the goal is the minimization of a given functional
that is not the subject of a search or even a discussion. The problem is to
find the structure that minimizes a functional prescribed by a designer. On
the other hand, the structure of a bone is known, but it is not clear in what
sense (if any) the bone structure is optimal.

The corresponding problem is the search for the cost functional of an
optimization problem with a known solution. This problem has not been
sufficiently investigated, to our knowledge.
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Indexes, References, etc.

The electronic version of the manuscript for the book was prepared with
the help of Professor Nelson Beebe using special BibTEX and LATEX macros
that he developed. In addition to the detailed table of contents, it contains
the list of figures, references, the author/editor index, and the index of
topics. Each item in the references points to the pages on which the source
was referred to. The references section is ordered alphabetically by the
name of primary author.

The author/editor index refers to the pages that contain the reference.
Boldface author names indicate primary authors, while names in Roman
text are nonprimary authors.

The book’s Web site, http://www.math.utah.edu/books/vmso, con-
tains an expanded bibliography in BibTEX form, an errata list, and other
related resources. Please email your comments to cherk@math.utah.edu.

Use in the Classroom

The book is an extended and edited version of the author’s lecture notes for
courses delivered at the University of Utah. The contents of the book may
be used for a year-long graduate course for students in applied mathematics,
science, and engineering. We do our best to keep the exposition simple
and do not hesitate to sacrifice rigor in favor of vividness, and generality
in favor of vigorous illustrations. The references point to more rigorous
formulations. The problems for discussion are in the end of chapters. Some
of them are simple exercises; the others require more serious analysis and
can be used for course projects.

A course in calculus of variations may be based on the classical material
(Gelfand and Fomin, 1963; Ewing, 1969; Weinstock, 1974), supplemented
by Chapter 1 (nonconvex one-dimensional problems), Chapter 4 (an ex-
ample of a variational problem for a distributed system), and Chapters
6–9 (relaxation of nonconvex multivariable problems), with examples from
Chapters 10–12 (G-closures).

A course in homogenization may use chapters from the “homogeniza-
tion” books (Bensoussan, Lions, and Papanicolaou, 1978; Jikov, Kozlov,
and Olĕınik, 1994) and Chapters 2 and 3 (conductivity, homogenization,
G-closure), Chapter 7 ( laminates, various structures of laminates of high
rank), Chapter 12 (multiphase structures), and Chapter 14 (elasticity, ho-
mogenization and matrix laminates). Chapters 4 and 5 (optimization by
laminates) may be used as examples of the use of composites.

A course in structural optimization may use Chapters 4 and 5 (optimiza-
tion of conducting bodies), Chapters 6–9 (relaxation of nonconvex multi-
variable problems), and Chapters 14–17 (elasticity, optimization of elastic
structures).
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Credits

The author has been tempted to present his view of the history of structural
optimization and nonconvex variational methods, but he has given that up
because the topic is too awesome, controversial, and sensitive. The very
length of the preceding list of names and topics testifies to this. We give
credit here to authors in a specific context of themes discussed. It is hardly
possible to give a complete survey of even the recent development of related
topics: New branches of the theory are constantly appearing. Instead, we
concentrate our attention on underlying ideas and methods that should
help to find solutions to new problems.

Most of the results and opinions presented are based on or related to the
author’s research, conducted for the most part in collaboration with Tim
Burns, Elena Cherkaeva, Andrey Fedorov, Leonid Gibiansky, Lars Krog,
Konstantin Lurie, Graeme Milton, Robert Palais, and Shmul Vigdergauz.

Many new results obtained by Grégoire Allaire, Marco Avellaneda, Mar-
tin Bendsøe, John Ball, Gilles Francfort, Leonid Gibiansky, Zvi Hashin,
Robert Kohn, Robert Lipton, Konstantin Lurie, Graeme Milton, François
Murat, Vincenzo Nesi, Niels Olhoff, Ole Sigmund, Gil Strang, Vladimı́r
Šverák, Luc Tartar, Salvatore Torquato, Smul Vigdergauz, Vasily Zhikov,
and others are explicitly used in the text.
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