Subject Index

abridged trial fields, 172
adjoint problem, 125
Airy equation, 363, 370, 372, 375, 396, 423
Airy function, 362, 363, 371, 376, 379, 434
analytic continuation, 343
anisotropic elastic material, 373
annulus of maximal conductivity, 109
annulus of minimal conductivity, 108
arithmetic mean, 53, 62, 313
attainability of the convex envelope, 155, 157, 411
attainability, counterexample, 156
attainability, min-max variational problem, 157
augmented functional, 83, 123, 124, 126, 136, 474
auxiliary local problem, 127
averaging operator, 5, 48

bar of extremal torsion stiffness, 110
bar of extremal torsion stiffness, multimaterial design, 111
beam, boundary value problem, 4
beam, homogenized equation, 6
biharmonic equation, 373
bilinear form, diagonalization, 128, 133
biomaterials, xxiii, xxiv
boundary of ellipticity, 466
bulk modulus, 369, 374
canonical equations, 29, 30
Carathéodory theorem, 16, 26, 32, 172, 216, 463
chattering boundary, 97
chattering control, xxii, 7
checkerboard structures, 65, 74, 465
classroom use, xxv
coated circles, 55, 56, 189, 253, 254, 283, 384, 427, 493
coated cylinders, 288
coated ellipses, 57, 283
coated sphere, axially symmetric anisotropic material, 294
coated spheres, 55, 58, 189, 198, 253, 256, 257, 283, 288, 294, 304, 307, 310, 318, 342, 387, 430, 493
comparing medium, 396, 425
comparison of nearby configurations, 239
compatibility conditions, 91, 157, 360, 376
compensated compactness, 60, 133, 214, 220–222, 376
complementary bound, 264
complex conductivity, 344
complex conductivity, first-order equations, 346
complex conductivity, minimal variational principle, 351
complex conductivity, minimax variational principle, 349, 350
complex conductivity, second-order equations, 347
complex permeability, 343
complex-valued potentials, 343
composite, xv, 46
composite variation, 328, 332, 333
composites of minimal compliance, 393
composites of minimal stiffness, 407
conductivity equations, 35
conductivity of inhomogeneous media, 35
conductivity tensor, 36
conductivity, constitutive relations, 36
conductivity, continuity conditions, 39
conductivity, differential constraints, 38
conductivity, expressions for energy, 44
conductivity, isotropic material, 37
conformal deformations, 373
conformal defects, 373
conformal invariance, 373
conjugate variables, 30
differential constraints, 148–150
differential scheme, 183, 186, 318, 452, 453
differential scheme, linear equation, 184
diffusion equilibria, 35
dilute composite, 241, 242
Dirichlet problem, 38
Dirichlet variational principle, 43
discontinuity of elastic properties, 377
discontinuity of strains, 377
discontinuity of stresses, 377
damage detection, 487
defective operator, 360, 363, 376, 377, 391, 408, 475
detectability, 244
Dev-operator, 394, 404
deviator, 374
deviatoric trace, 367, 383
differential constraints, 148–150
differential scheme, 183, 186, 318, 452, 453
differential scheme, linear equation, 184
dilute equilibria, 35
dilute composite, 241, 242
Dirichlet problem, 38
Dirichlet variational principle, 43
discontinuity of elastic properties, 377
discontinuity of strains, 377
discontinuity of stresses, 377
dissipation rate, 346
dissipative media, 343
divergencefree and curlfree vectors in 2D, 105
divergencefree field, 36
diversity of optimal topologies, 341
domain of the convexity, boundary of, 9
dual form of conductivity equations, 39
dual variable, 29
duality, 29, 38, 44, 131, 352, 391
duality of variational principles, 44
dyadic product, 71, 147
effective medium theory, 55
effective properties tensor, 46
effective tensor of elastic laminates, 380
effective tensor, calculation, 50
effective tensor, calculation by variational approach, 61
effective tensor, elastic composite, 379
effective tensor, laminates of two conducting materials, 51
effective tensor, optimal eigenvalues, 128
effective tensor, optimal orientation, 128
effective tensor, properties, 49
effective tensor, variational approach, 59, 60
eigenbasis, 370
eigenstrain, 321, 322, 325
eigentensor, 370, 396, 423
eigenvalue optimization, 487
elastic energy, 378, 379
elasticity, continuity conditions, 377
elliptical inclusion, 242
elliptical system, 375
ellipticity, 162
equilibrium of stresses, 361
equivalence of elasticity tensors, 372
equivalence of topologically different constructions, 342
equivalent nonlinear elastic material, 395
errata list, xxv

Euler equation, 12, 14, 15, 26, 28, 29, 33, 42, 60
Euler equation, degeneration, 23, 26–28
Euler equation, vector-valued minimizer, 13
Euler–Lagrange equation, 11, 42, 43, 60, 104, 130, 151, 161, 162, 170, 219, 347, 349, 350, 379, 391, 483, 484, 486
Euler–Lagrange equation, degeneration, 87, 162, 462, 463
evolution, xxiv
exact relations, 293, 303, 305, 424
existence of a solution to a variational problem, 13
existence of minimizers, 122
expanded bibliography, xxv
extended Lagrangian, 99, 246, 251
extremal material, 201, 342, 387
extremal material, availability, 206
extremal material, imitation, 204
extremal material, matrix laminates, 204
extremal material, properties, 202
extremal material, subspace of zeros, 202, 203
extreme effective properties, xix
field concentration, 46
fields in a laminate of a high rank, 195, 196
fields in laminates, 177
fields in multiphase optimal composites, 342
fields in optimal structures, 235, 236
fields in the T-structure, 196
fine-scale perturbation, 161
fine-scale perturbations, 13, 151, 158
fixed-point scheme, 456
flow in porous media, 35
forbidden interval, 15, 16, 25, 27, 96–100, 102, 106, 115
forbidden region, 19, 22, 23, 96, 99, 123, 163, 164, 239, 240, 245, 246, 249, 253, 327, 334–336
Fourier image, 221
Fourier transform, 220
fourth-order moments, 385
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractal geometries, 200</td>
</tr>
<tr>
<td>(G)-closeness, 69</td>
</tr>
<tr>
<td>(G)-closeness of controls, 121, 122</td>
</tr>
<tr>
<td>(G)-closure, xix, 67, 68</td>
</tr>
<tr>
<td>(G)-closure of controls, 122</td>
</tr>
<tr>
<td>(G)-closure, 2D conductivity, 73, 289</td>
</tr>
<tr>
<td>(G)-closure, 3D conductivity, 290</td>
</tr>
<tr>
<td>(G)-closure, applications, 68</td>
</tr>
<tr>
<td>(G)-closure, complex conductivity, 353</td>
</tr>
<tr>
<td>(G)-closure, connectedness, 69</td>
</tr>
<tr>
<td>(G)-closure, polycrystals, 291</td>
</tr>
<tr>
<td>(G)-closure, polycrystals, 292, 293</td>
</tr>
<tr>
<td>(G)-closure, simple-connectedness, 74</td>
</tr>
<tr>
<td>(G)-closure, the closure rule, 70</td>
</tr>
<tr>
<td>(G)-closure, the conservation property, 71</td>
</tr>
<tr>
<td>(G)-closure, the envelope rule, 70</td>
</tr>
<tr>
<td>(G)-closure, the junction rule, 70</td>
</tr>
<tr>
<td>(G)-closure, the swallow rule, 70</td>
</tr>
<tr>
<td>(G)-closure, translation bound, 269, 270</td>
</tr>
<tr>
<td>(G)-closure, weak, 75</td>
</tr>
<tr>
<td>(G)-closure, finiteness, 69</td>
</tr>
<tr>
<td>(G)-convergence, 64</td>
</tr>
<tr>
<td>(G)-convergence, 63</td>
</tr>
<tr>
<td>(G)-convergence and strong convergence, 65</td>
</tr>
<tr>
<td>(G)-convergence and weak convergence, 66</td>
</tr>
<tr>
<td>(G)-convergence of controls, 121</td>
</tr>
<tr>
<td>(G)-limit, 64</td>
</tr>
<tr>
<td>(G_m)-closure, 68, 261, 263, 265, 267–269, 277</td>
</tr>
<tr>
<td>(G_m)-closure, 2D conductivity, 280</td>
</tr>
<tr>
<td>(G_m)-closure, 3D conductivity, 284–287</td>
</tr>
<tr>
<td>(G_m)-closure, anisotropic phase, 341</td>
</tr>
<tr>
<td>(G_m)-closure, conductivity, 279</td>
</tr>
<tr>
<td>(G_m)-closure, coupled conductivities, 297</td>
</tr>
<tr>
<td>(G_m)-closure, multiphase, 309, 325</td>
</tr>
<tr>
<td>(G_m)-closure, translation bound, 263, 265</td>
</tr>
<tr>
<td>game “loadings versus design”, 491</td>
</tr>
<tr>
<td>generalized controls, xvi</td>
</tr>
<tr>
<td>generalized curve, 14, 22, 27, 97</td>
</tr>
<tr>
<td>generalized solution, 14</td>
</tr>
<tr>
<td>geometrically independent bound, 86</td>
</tr>
<tr>
<td>geometry of optimal multiphase composites, 328</td>
</tr>
<tr>
<td>Gibbs principle, xxiii</td>
</tr>
<tr>
<td>Green’s theorem, 36, 124, 160</td>
</tr>
<tr>
<td>growing crystal, 187</td>
</tr>
<tr>
<td>Hamiltonian, 29, 30</td>
</tr>
<tr>
<td>harmonic mean, 53, 62, 313</td>
</tr>
<tr>
<td>harmonic mean bound, 62</td>
</tr>
<tr>
<td>harmonic oscillation, 345</td>
</tr>
<tr>
<td>herringbone structure, 389, 412, 457, 459, 477, 478, 495</td>
</tr>
<tr>
<td>Hessian, 9, 18, 159, 273</td>
</tr>
<tr>
<td>hexagonal structure, 430</td>
</tr>
<tr>
<td>hierarchy of the scales, 175</td>
</tr>
<tr>
<td>Hill’s bounds, 380, 421</td>
</tr>
<tr>
<td>homogenization, 46</td>
</tr>
<tr>
<td>homogenized problem, 126</td>
</tr>
<tr>
<td>Hooke’s law, 362, 365, 369, 376</td>
</tr>
<tr>
<td>hunt for the multicomponent (G_m)-closures, 342</td>
</tr>
<tr>
<td>icosahedron, 387, 493</td>
</tr>
<tr>
<td>ideal conductor, 326</td>
</tr>
<tr>
<td>ill-posed problem, 13, 16, 123, 240, 465</td>
</tr>
<tr>
<td>imitation of properties, 342</td>
</tr>
<tr>
<td>incompatible materials, 321, 323, 324</td>
</tr>
<tr>
<td>incompressible elastic medium, 373</td>
</tr>
<tr>
<td>increment of energy, 241</td>
</tr>
<tr>
<td>increment of the cost, 10</td>
</tr>
<tr>
<td>indirect measurements, 305</td>
</tr>
<tr>
<td>inductance, 343</td>
</tr>
<tr>
<td>infinitely soft, stiff materials, 477</td>
</tr>
<tr>
<td>infinitesimal variations, 10</td>
</tr>
<tr>
<td>Ink-operator, 375–377, 391</td>
</tr>
<tr>
<td>(^2) Ink-operator, 360, 362, 363, 370, 372, 408, 411</td>
</tr>
<tr>
<td>instabilities, minimax problem, 106</td>
</tr>
<tr>
<td>integrability conditions, 32, 149</td>
</tr>
<tr>
<td>invariance under the rotation, 169, 170, 173, 234, 261, 272, 273, 297, 363, 365, 367</td>
</tr>
<tr>
<td>invariant properties of an anisotropic elastic material, 374</td>
</tr>
<tr>
<td>inverse problem, 414</td>
</tr>
</tbody>
</table>
involution, 30
isoperimetric inequalities, 10
isotropic matrix laminates, 384
isotropic polycrystal, 459
isotropic three-dimensional polycrystal, 187
isotropy, 369
iterative method, 130

Jensen’s inequality, 8, 16, 158
Jensen’s inequality, integral form, 9
jump conditions, 235, 252
jump conditions, three phases, 331
jump of the current vector, 41, 42
jump of the field, 41, 42
jump of the strain matrix, 378
jump of the stress matrix, 377

kinetic equation, 36

L-closure, 270–274, 277
L-closure, 2D conductivity, 274
L-closure, convexity, 276
L-closure, properties, 273
L_1-bound, 173
Lagrangian, 7, 99
Lagrangian, dual form, 30
Lagrangian, nonsmooth, 103, 104, 158, 491
Lagrangians, equivalence, 28
laminate from two isotropic conductors, 179
laminate of second rank, 182
laminated polycrystal, 276
laminates from a family of materials, 180
laminates of high rank, 182
laminates of high rank, fields, 195
laminates of second rank, 175, 275
laminates, any number of materials, 180
laminates, controllable parameters, 187
laminates, extremal properties, 90
laminates, formula for effective properties, 179, 185
laminates, two materials, 179
lamination closure, 183, 270
Lamé equations, 363, 370, 371, 375, 379, 391, 474
Laplace equation, 87
Levi-Civita tensor, 150
linear invariants, 367
link between the cost of materials and their volume fractions, 115, 334
local minima, xxiv
local problem, 84, 126, 127, 133
Lyapunov functions, 213

main invariants, 283, 286, 287
mathematical extravagance, xix
matrix laminate of second rank, 190
matrix laminates of the third rank, 406
matrix laminates, G_m-closure, 283, 287
matrix laminates, G_m-closure. Degeneration, 287
matrix laminates, conductivity, 191
matrix laminates, effective tensor, 191
matrix laminates, elasticity, 382
matrix laminates, equivalence, 193
matrix laminates, fields, 256
matrix laminates, geometry, 189
matrix laminates, ideal materials, 204
matrix laminates, invariants, 192, 198
matrix laminates, link to the translation bound, 236, 237
matrix laminates, necessary conditions, 255
matrix laminates, optimal, 207
matrix laminates, optimal properties, 209–211
matrix laminates, rank, 192
maximal difference between weighted maximal and minimal eigenvalues, 128
maximin theorem, 103
maximization of the resistance, 103
min-max problem, 489
minimal and minimax variational principles, 352
minimal extension, xx, 19, 22, 92, 99, 101, 239, 240, 247, 249-251, 256-258, 277, 325, 494
minimax variational problem, 103, 350
minimizer, 7
minimizing sequences, 171
minimizing sequences for a two-well Lagrangian, 27
multiwell Lagrangian, convex envelope, 168
multiwell Lagrangian, discontinuity, 115
multiwell Lagrangian, range of Lagrange multipliers, 334
multiwell Lagrangian, nonuniqueness, 113, 114
natural mixtures with minimal energy, xxiv
natural variational principle, xxiii
necessary conditions, 92, 239, 245, 325, 462, 467
necessary conditions for nonconvex variational problems, 239
necessary conditions in the form of inequalities, 12
necessary conditions of the Weierstrass type, xx
necessary conditions, laminates, 102
necessary conditions, multicomponent composites, 310, 326
necessary conditions, Weierstrass variation, 102
Neumann problem, 38
nonconvex Lagrangian, 15
nonconvex variational problem, formulation, 90
nonconvex variational problem, minimizing sequences, 19
nondestructive testing, 244
nonlocal equations, 463
nonself-adjointed problem, 147
nonuniqueness of elastic constants, 373
nonuniqueness of optimal structures, 256
normal stresses, 361
null-Lagrangian, 27, 28, 60, 162, 163, 165, 170, 217, 219, 372, 396, 403
numerical methods, xviii, 47, 81, 86, 115, 130, 309, 395, 417, 461, 465, 466, 472
numerical solution, 81, 86, 130, 309, 390, 405, 417, 418, 430, 461, 465, 472, 479
numerical solution, stability, 465
octagon, 398
optical transparent medium, 343
optimal cavities, xvii, 413–420
optimal cavity, dependence on the connectedness, 414, 418, 420
optimal cavity, nonsmoothness of the boundary, 416
optimal composites and G_m-closures, 88
optimal cylindrical shell, conductivity, 134, 135
optimal cylindrical shell, elasticity, 475
optimal effective tensor, 128
optimal infinitesimal inclusion, 326
optimal laminates, 129
optimal matrix laminates, 211
optimal microstructure, nonuniqueness, 256
optimal periodic structures, 472
optimal strain energy, 398
optimal stress energy, 398, 403, 470
optimal structures, multiphase composites, 334
optimal topology, 310
optimal translator, 231
optimal wheel, 494
optimality criterion of a natural structure, xxiv
optimality of the fields in the structures, 338
orthotropy, 365, 367
overdetermined boundary, 97, 107

percolation, 307
periodic composite, 471
permitted regions, 327
phase separation, xxiii
phase transition, xxiii, 114, 321
piecewise quadratic Lagrangian, 25, 167, 168, 176, 211, 228
Plancherel's formula, 221, 222
Poisson coefficient, xv, 371, 373, 390, 406, 480
polar representation, 470
polyconvexity, 214
polycrystals, 292, 293
polycrystals in 2D, laminates, 180
polycrystals in 3D, isotropic, 186
polycrystals in 3D, optimal laminates, 294

polycrystals in 3D, optimal structures, 294
polycrystals, translation bound, 269
Pontryagin's maximum principle, 92, 240
potential field, 159
Prandtl function, 110
problem of the shortest path, 9
pyramidal variation, 152
quadratic invariants, 367
quadratic translator, 220, 225, 265
quadratic translator, 2D, 226
quadratic translator, 3D, 226
quadratic translator, method to find, 225
quasiaffine function, 161
quasiaffine translator, 232
quasiconformal mapping, 341
quasiconvex envelope, 163, 165, 231, 471
quasiconvex envelope, supported by more than two wells, 342
quasiconvexity, 158, 160
quasiconvexity, definition, 158, 159
quasiconvexity, finite-dimensional analogue, 159
quasiconvexity, properties, 160

rank-one connection, 255
rank-one convexity, 154, 155
Rayleigh ratio, 483
refraction, 138
relaxation and G-convergence, 117
relaxation based on the G-closure, 83
relaxation of nonconvex problems, 19
relaxation, final extension, 102
relaxation, optimal currents, 97
relaxation, optimal fields, 97, 98
relaxed problem, 19, 84, 86, 465
relaxed problem, properties, 19, 23
relaxed problem, the number of minimizers, 23
residue energy, 323, 324
restricted finite-dimensional problem, 160
Reuss' bounds, 62
rigid-soft material, 387
Ritz method, 171
rotation of fourth-rank tensors, 363
saddle function, 123, 352, 483
saddle Lagrangian, 131
saddle point, 12, 332, 350, 483, 486
saw-tooth functions, 15
secant hyperplanes, 16
second conjugate, 31
second variation, 349–352
second-order differential constraints, 411
second-order moments, 385
second-rank laminates, 257, 277, 398, 400
secured spheres, 306–308
self-adjoint elliptic equations, 133
self-adjoint problem, 125, 129
self-repeating structures, 200, 325
self-similar procedure, 325
sensitivity to perturbations, 491
separation of scales, 182
shape memory alloys, xxiii
shear, 361
shear modulus, 369, 374
Sigmund’ structure, 430
simple mechanisms, 390, 479
single variations, 327
sixth-rank laminates, 387
skeleton of a structure, 203, 401
spherical trace, 367, 383
spiral, 189, 476, 493
square symmetry, 368
stability against fine-scale perturbations, 13, 22, 101, 104, 146, 151, 155
stability against variations in loading, 465
stability against variations of external conditions, 465
stability under homogenization, 72, 118–120
stable iterative scheme, 472
stable structures, 467
stationary condition, 11, 42
statistically homogeneous, 46
steady-state conductivity, 35
Steklov eigenvalue problem, 479, 484
strain energy, 378, 407–409
stress energy, 379, 393, 395, 398, 400, 406, 413, 468, 471, 480, 481
strong convexity, 8
strong variations of the material’s properties, 240
strongest local variation, 97
structural parameter, 306, 307
sufficient conditions, conductivity, 85
Sigmund’s structure, 479
sum of energies, 263
superposition rule for functions of χ, 57
supporting hyperplane, 8, 17
symmetric quadratic functions of the eigenvalues, 227
symmetries of the stiffness tensor, 362
T-structure, 176, 339
T-structure, fields, 196
tangential stresses, 361
tensor basis, special, 364
tensor potential Φ of stresses, 375
tetrahedrons, 467
thermolens, 135, 137
third-rank laminates, 391, 468, 487, 488, 492, 493, 495
Thompson’s variational principle, 43
total conductivity, 82, 89
trace bounds, 384
tractions, 361
translation bound, 216, 228, 229, 231, 232, 236, 237, 310, 342, 396, 398–402, 405, 406, 408, 409, 477
translation bound for G_m-closure, 266
translation bound on volume fractions, 268
translation bound, attainability, 217, 235
translation bound, coupled conductivities, 297, 300
translation bound, modified, 267
translation bound, stress energy, 395
translation bounds for G_m-closure, exactness, 268
translation bounds, 2D conductivity, 280, 282, 286, 287
translation bounds, 3D conductivity, 284, 286
translation bounds, coupled conductivities, 297
translation bounds, polycrystals, 292, 293
translation method, 218, 342
translation method, modified, 436
translation method, weighted, 309, 319
translator, 160, 161, 215, 217, 280, 284–286
translator, extremal, 229, 236
transport equations, 35
TrD-operator, 367, 455
TrS-operator, 367, 455
“truly periodic” structures, 283
two scales of discretization, 472
two-well function, convex envelope, 17, 18
two-well Lagrangian, 91, 133, 156, 173, 174, 176, 211, 228
two-well Lagrangian, convex envelope, 25
upper bound, attainable, 22
upper bounds of the quasiconvex envelope, 171–174, 176, 207, 239, 247, 251
variation in a strip, 92, 93, 123, 333
variation in a strip, increment, 94
variation in a strip, optimal orientation, 95
variation in a strip, variation of the field, 94
variation in a strip, Weierstrass condition, 95
variation in an ellipse, 333
variation of the loading, 479
variational inequality, 35
variational principle for the strain energy, 378
variational principle for the stress energy, 379
Vigdergauz’ structures, 283, 412, 415
viscoelasticity, 343, 355
Voigt bounds, 62
Walpole bounds, 427, 439
weak G-closure, 75, 123, 128
weak lower semicontinuity, 120
weak solution, 38
weakly continuous functionals, 119, 123
weakly discontinuous functionals, 120
weakly lower continuous functionals, 121, 122, 474
weakly lower semicontinuous functionals, 120
Weierstrass condition, 152
Weierstrass conditions, 12, 81, 99
Weierstrass test, xx, 7, 10, 12, 14, 15, 19, 22, 23, 27, 32, 92, 99, 102, 104, 107, 123, 151
Weierstrass test, minimax problem, 105, 106
Weierstrass test, neutrality, 100, 247
Weierstrass test, vector-valued minimizer, 13
Weierstrass variation, 12, 28, 99, 102, 151–153, 240, 247, 325
Weierstrass-type condition, 93, 123, 151, 152, 154, 241, 243, 325
Weierstrass-type variation, 164, 242
weighted translation method, 340
wheel optimal, 493, 494
Wiener bounds, 61, 62, 69, 127, 169, 193, 292, 310, 311, 354, 355, 421, 424
Wiener box, 74, 193, 194, 263, 280, 283, 311, 312, 315, 316, 340
Y-transform, 193, 267, 284, 288, 301, 426, 429, 430
Young measures, 164
Young modulus, 371, 480
Young–Fenchel transform, 30, 31, 131
zigzag curve, 20